Skip to main content

Multistage Carcinogenesis: A Unified Framework for Cancer Data Analysis

  • Chapter
  • First Online:
Statistical Modeling for Biological Systems
  • 828 Accesses

Abstract

Traditional approaches to the analysis of epidemiologic data are focused on estimation of the relative risk and are based on the proportional hazards model. Proportionality of hazards in epidemiologic data is a strong assumption that is often violated but seldom checked. Risk often depends on detailed patterns of exposure to environmental agents, but detailed exposure histories are difficult to incorporate in the traditional approaches to analyses of epidemiologic data. For epidemiologic data on cancer, an alternative approach to analysis can be based on ideas of multistage carcinogenesis. The process of carcinogenesis is characterized by mutation accumulation and clonal expansion of partially altered cells on the pathway to cancer. Although this paradigm is now firmly established, most epidemiologic studies of cancer incorporate ideas of multistage carcinogenesis neither in their design nor in their analyses. In this paper we will briefly discuss stochastic multistage models of carcinogenesis and the construction of the appropriate likelihoods for analyses of epidemiologic data using these models. Statistical analyses based on multistage models can quite explicitly incorporate detailed exposure histories in the construction of the likelihood. We will give examples to show that using ideas of multistage carcinogenesis can help reconcile seemingly contradictory findings, and yield insights into epidemiologic studies of cancer that would be difficult or impossible to get from conventional methods. Finally, multistage cancer models provide a unified framework for analyses of data from diverse sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Parameters would be expected to return to background levels with exposure to agents, such as benzene, that are rapidly cleared from the body. Other agents, such as amphibole asbestos, accumulate in tissues, and after exposure to such agents stops, the parameters of the model could remain altered for a long period of time and would be expected to return to background levels only slowly as the agent is excreted from tissues.

References

  1. Armitage, P., & Doll, R. (1954). The age distribution of cancer and a multi-stage theory of carcinogenesis. British Journal of Cancer, 8, 1–12.

    Article  Google Scholar 

  2. Berenblum, I., & Shubik, P. (1947). A new, quantitative approach to the study of the stages of chemical carcinogenesis in the mouse’s skin. British Journal of Cancer, 1, 383–391.

    Article  Google Scholar 

  3. Berman, D. W., & Crump, K. S. (2008). Update of potency factors for asbestos-related lung cancer and mesothelioma. Critical Reviews in Toxicology, 38(Suppl 1), 1–47.

    Article  Google Scholar 

  4. Bozic, I., Antal, T., Ohtsuki, H., Carter, H., Kim, D., Chen, S., et al. (2010). Accumulation of driver and passenger mutations during tumor progression. Proceedings of the National Academy of Sciences, 107(43), 18545–18550.

    Article  Google Scholar 

  5. Breslow, N. (1974). Covariance analysis of censored survival data. Biometrics, 30(1), 89–99.

    Article  MathSciNet  Google Scholar 

  6. Brouwer, A. F., Meza, R., & Eisenberg, M. C. (2017). Parameter estimation for multistage clonal expansion models from cancer incidence data: A practical identifiability analysis. PLoS Computational Biology, 13(3), e1005431–18.

    Article  Google Scholar 

  7. Brown, C. C., & Chu, K. C. (1983). Implications of the multistage theory of carcinogenesis applied to occupational arsenic exposure. Journal of the National Cancer Institute, 70, 455–463.

    Google Scholar 

  8. Burns, D. M., Shanks, T. G., Choi, W., Thun, M. J., Heath, C. W., & Garfinkel, L. (1997). The American Cancer Society Cancer Prevention Study I: 12-year followup of 1 million men and women. In D. M. Burns, L. Garfinkel, & J. M. Samet (Eds.) Smoking and tobacco control, monograph 8 (pp. 113–304). NIH Publ. No 97-4213.

    Google Scholar 

  9. Cole, B. F., Baron, J. A., Sandler, R. S., Haile, R. W., Ahnen, D. J., Bresalier, R. S., et al. (2007). Folic acid for prevention of colorectal adenomas. A randomized clinical trial. JAMA : The Journal of the American Medical Association, 297, 2351–2359.

    Article  Google Scholar 

  10. Cox, D. R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society, Series B: Statistical Methodology, 34, 187–220.

    MATH  Google Scholar 

  11. Crump, K. S., Chen, C., Fox, J. F., Van Landingham, C., & Subramaniam, R. (2008). Sensitivity analysis of biologically motivated model for formaldehyde-induced respiratory cancer in humans. The Annals of Occupational Hygiene, 52, 481–95.

    Google Scholar 

  12. Crump, K. S., Subramaniam, R. P., & Landigham, C. B. (2005). A numerical solution to the nonhomogeneous two-stage MVK model of cancer. Risk Analysis, 25, 921–926.

    Article  Google Scholar 

  13. Day, N. E., & Brown, C. C. (1980). Multistage models and the primary prevention of cancer. Journal of the National Cancer Institute, 64, 977–989.

    Google Scholar 

  14. Dewanji, A., Jeon, J., Meza, R., & Luebeck, E. G. (2011). Number and size distribution of colorectal adenomas under the multistage clonal expansion model of cancer. PLoS Computational Biology, 7(10), e1002213.

    Article  MathSciNet  Google Scholar 

  15. Dewanji, A., Venzon, D. J., & Moolgavkar, S. H. (1989). A stochastic two-stage model for cancer risk assessment II: The number and size of premalignant clones. Risk Analysis, 9, 179–186.

    Article  Google Scholar 

  16. Doll, R., & Peto, R. (1978). Cigarette smoking and bronchial carcinoma: Dose and time relationships among regular smokers and life-long non-smokers. Journal of Epidemiology and Community Health, 32, 303–313.

    Article  Google Scholar 

  17. Efron, B., & Morris, C. (1977). Comment on A Simulation Study of Alternative to Least Squares, by H. Clark and T. Schwisow. The American Statistician, 72, 102–109.

    Google Scholar 

  18. Hanin, L. G., & Yakovlev, A. Y. (1996). A nonidentifiability aspect of the two-stage model of carcinogenesis. Risk Analysis, 16, 711–715.

    Article  Google Scholar 

  19. Hazelton, W. D., Clements, M. S., & Moolgavkar, S. H. (2005). Multistage carcinogenesis and lung cancer mortality in three cohorts. Cancer Epidemiology, Biomarkers & Prevention, 14, 1171–1181.

    Article  Google Scholar 

  20. Hazelton, W. D., Luebeck, E. G., Heidenreich, W. F., & Moolgavkar, S. H., (2001). Analysis of a historical cohort of Chinese tin miners with arsenic, radon, cigarette smoke, and pipe smoke exposures using the biologically based two-stage clonal expansion model. Radiation Research, 156(1), 78–94.

    Article  Google Scholar 

  21. Heidenreich, W. (1996). On the parameters of the clonal expansion model. Radiation and Environmental Biophysics, 35, 127–129.

    Article  Google Scholar 

  22. Heidenreich, W., Luebeck, E. G., & Moolgavkar, S. H. (1997). Some properties of the hazard function of the two-mutation clonal expansion model. Risk Analysis, 17, 391–399.

    Article  Google Scholar 

  23. Heidenreich, W., Wellmann, J., Jacob, P., & Wichmann, H. E. (2002). Mechanistic modelling in large case-control studies of lung cancer risk from smoking. Statistics in Medicine, 21, 3055–3070.

    Article  Google Scholar 

  24. Hethcote, H. W., & Knudson, A. G. (1978). Model for the incidence of embryonal cancer: application to retinoblastoma. Proceedings of the National Academy of Sciences of the United States of America, 75, 2453–2457.

    Google Scholar 

  25. Holford, T. R. (1991). Understanding the effects of age, period and cohort on incidence and mortality rates. Annual Review of Public Health, 12, 425–457.

    Article  Google Scholar 

  26. Holford, T. R., Zhang, Z., McKay, L. A. (1994). Estimating age, period and cohort effects using the multistage model for cancer. Statistics in Medicine, 13, 23–41.

    Article  Google Scholar 

  27. Howard, S. (1972). Contribution to the discussion of a paper by DR Cox: Regression models and life-tables. Journal of the Royal Statistical Society. Series B, 34, 210–211.

    Google Scholar 

  28. Jeon, J., Luebeck, E. G., & Moolgavkar, S. H. (2006). Age effects and temporal trends in adenocarcinoma of esophagus and gastric cardia. Cancer Causes Control, 17, 971–981.

    Article  Google Scholar 

  29. Jeon, J., Meza, R., Hazelton, W. D., Renehan, A. G., & Luebeck, E. G. (2015). Incremental benefits of screening colonoscopy over sigmoidoscopy in average-risk populations: a model-driven analysis. Cancer Causes & Control, 26(6), 859–870.

    Article  Google Scholar 

  30. Jeon, J., Meza, R., Moolgavkar, S. H., & Luebeck, E. G. (2008). The evaluation of cancer screening strategies using multistage carcinogenesis models. Mathematical Biosciences, 213, 56–70.

    Article  MathSciNet  MATH  Google Scholar 

  31. Jones, S., Chen, W., Parmigiani, G., Diehl, F., Beerenwinkel, N., Antal, T., et al. (2008). Comparative lesion sequencing provides insights into tumor evolution. Proceedings of the National Academy of Sciences, 105(11), 4283–4288.

    Article  Google Scholar 

  32. Knudson, A. G. (2001). Two genetic hits (more or less) to cancer. Nature Reviews Cancer, 1(2), 157.

    Article  Google Scholar 

  33. Knudson, A. G., Hethcote, H. W., & Brown, B. W. (1975). Mutation and childhood cancer: A probabilistic model for the incidence of retinoblastoma. Proceedings of the National Academy of Sciences USA, 72, 5116–5120.

    Google Scholar 

  34. Langholz, B. (2010). Case-control studies =  odds ratios. Blame the retrospective model. Epidemiology, 21, 10–12.

    Article  Google Scholar 

  35. Little, M. P. (1995). Are two mutations sufficient to cause cancer? Some generalizations of the two mutation model of carcinogenesis of Moolgavkar, Venzon and Knudson, and of the multistage model of Armitage and Doll. Biometrics, 51, 1278–1291.

    Article  MATH  Google Scholar 

  36. Little, M. P. (2010). Cancer models, genomic instability and somatic cellular Darwinian evolution. Biology Direct, 5, 19.

    Article  Google Scholar 

  37. Little, M. P., Heidenreich, W. F., & Li, G. (2009). Parameter identifiability and redundancy in a general class of stochastic carcinogenesis models. PLoS One, 4(12), e8520.

    Article  Google Scholar 

  38. Luebeck, E. G., Buchmann, A., Stinchcombe, S., Moolgavkar, S. H., & Schwarz, M. (2000). Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on initiation and promotion of GSTP-positive foci in rat liver: A quantitative analysis of experimental data using a stochastic model. Toxicology and Applied Pharmacology, 167, 63–73.

    Article  Google Scholar 

  39. Luebeck, E. G., Curtis, S. B., Cross, F. T., & Moolgavkar, S. H. (1996). Two-stage model of radon-induced malignant lung tumors in rats: effects of cell killing. Radiation Research, 145(2), 163–173.

    Article  Google Scholar 

  40. Luebeck, E. G., Curtius, K., Jeon, J., & Hazelton, W. D. (2013). Impact of tumor progression on cancer incidence curves. Cancer Research, 73(3), 2198.

    Article  Google Scholar 

  41. Luebeck, E. G., & Moolgavkar, S. H. (2002). Multistage carcinogenesis and the incidence of colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 99, 15095–15100.

    Google Scholar 

  42. Luebeck, E. G., Moolgavkar, S. H., Buchmann, A., & Schwarz, M. (1991). Effects of polychlorinated biphenyls in rat liver: Quantitative analysis of enzyme-altered foci. Toxicology and Applied Pharmacology, 111(3), 469–484.

    Article  Google Scholar 

  43. Luebeck, E. G., Moolgavkar, S. H., Liu, A., & Ulrich, N. (2008). Does folic acid supplementation prevent or promote colon cancer? Results from model-based predictions. Cancer Epidemiology, Biomarkers & Prevention, 17, 1360–1367.

    Article  Google Scholar 

  44. Mason, J. B., Dickstein, A., Jacques, P. F., Haggarty, P., Selhub, J., Dallal, G. et al. (2007). A temporal association between folic acid fortification and an increase in colorectal cancer rates may be illuminating important biological principles: a hypothesis. Cancer Epidemiology, Biomarkers & Prevention, 16, 1325–1329.

    Article  Google Scholar 

  45. Meza, R., Hazelton, W. D., Colditz, G. A., & Moolgavkar, S. H. (2008a). Analysis of lung cancer incidence in the nurses’ health and the health professionals’ follow-up studies using a multistage carcinogenesis model. Cancer Causes Control, 19, 317–328.

    Article  Google Scholar 

  46. Meza, R., Jeon, J., Moolgavkar, S. H., & Luebeck, E. G. (2008b). The age-specific incidence of cancer: phases, transitions and biological implications. Proceedings of the National Academy of Sciences of the United States of America, 105, 16284–16289.

    Google Scholar 

  47. Moolgavkar, S. H. (1995). When and how to combine results from multiple epidemiological studies in risk assessment. In J. Graham (ed.) The proper role of epidemiology in regulatory risk assessment (pp. 77–90). New York: Elsevier.

    Google Scholar 

  48. Moolgavkar, S. H., Chang, E. T., Watson, H. N., & Lau, E. C. (2018). An assessment of the cox proportional hazards regression model for epidemiologic studies. Risk Analysis, 38(4), 777–794.

    Article  Google Scholar 

  49. Moolgavkar, S. H., Day, N. E., & Stevens, R. G. (1980). Two-stage model for carcinogenesis: Epidemiology of breast cancer in females. Journal of the National Cancer Institute, 65, 559–569.

    Google Scholar 

  50. Moolgavkar, S. H., Krewski, D., & Schwarz, M. (1999). Mechanisms of carcinogenesis and biologically-based models for quantitative estimation and prediction of cancer risk. In S. H. Moolgavkar, D. Krewski, L. Zeise, E. Cardis, & H. Moller (Eds.) Quantitative estimation and prediction of cancer risk (pp. 179–238). Lyon: IARC Scientific Publications.

    Google Scholar 

  51. Moolgavkar, S. H., & Luebeck, G. (1990). Two-event model for carcinogenesis: Biological, mathematical and statistical considerations. Risk Analysis, 10, 323–341.

    Article  Google Scholar 

  52. Moolgavkar, S. H., & Luebeck, E. G. (1992). Multistage carcinogenesis: A population-based model for colon cancer. Journal of the National Cancer Institute, 84, 610–618.

    Article  Google Scholar 

  53. Moolgavkar, S. H., Luebeck, E. G., de Gunst, M., Port, R. E., & Schwarz, M. (1990). Quantitative analysis of enzyme altered foci in rat hepatocarcinogenesis experiments. Carcinogenesis, 11, 1271–1278.

    Article  Google Scholar 

  54. Moolgavkar, S. H., Luebeck, E. G., Turim, J., & Brown, R. C. (2000). Lung cancer risk associated with exposure to man-made fibers. Drug and Chemical Toxicology, 23(1), 223–242.

    Article  Google Scholar 

  55. Moolgavkar, S. H., Meza, R., & Turim, J. (2009). Pleural and peritoneal mesotheliomas in SEER: Age effects and temporal trends, 1973–2005. Cancer Causes & Control, 20(6), 935–944.

    Article  Google Scholar 

  56. Moolgavkar, S. H., Turim, J., Alexander, D. D., Lau, E. C., & Cushing, C. A. (2010). Potency factors for risk assessment at Libby, Montana. Risk Analysis, 30, 1240–1248.

    Article  Google Scholar 

  57. Moolgavkar, S. H., & Venzon, D. J. (1979). Two-event model for carcinogenesis: Incidence curves for childhood and adult tumors. Mathematical Biosciences, 47, 55–77.

    Article  MATH  Google Scholar 

  58. Peto, J. (2012). That the effects of smoking should be measured in pack-years: Misconceptions. British Journal of Cancer, 107(3), 406–407.

    Article  Google Scholar 

  59. Peto, J., Seidman, H., & Selikoff, I. J. (1982). Mesothelioma mortality in asbestos workers: Implications for models of carcinogenesis and risk assessment. British Journal of Cancer, 45, 124–135.

    Article  Google Scholar 

  60. Peto, R. (1972). Contribution to discussion paper by D. R. Cox: Regression models and life-tables. Journal of the Royal Statistical Society, Serial B, 34, 205–207.

    MathSciNet  Google Scholar 

  61. Poole, C. (2010). On the origin of risk relativism. Epidemiology, 21, 3–9.

    Article  Google Scholar 

  62. Prentice, R. L., & Breslow N. E. (1978). Retrospective studies and failure time models. Biometrika, 65(1), 153–158.

    Article  MATH  Google Scholar 

  63. Prentice, R. L., & Kalbfleisch, J. D. (1979). Hazard rate models with covariates. Biometrics, 35(1), 25–39.

    Article  MathSciNet  MATH  Google Scholar 

  64. Rachet, B., Siemiatycki, J., Abrahamowicz, M., & Leffondre, K. (2004). A flexible modeling approach to estimating the component effects of smoking behavior on lung cancer. Journal of Clinical Epidemiology, 57, 1076–1085.

    Article  Google Scholar 

  65. Richardson, D. B. (2008). Temporal variation in the association between benzene and leukemia mortality. Environmental Health Perspectives, 116, 370–374.

    Article  Google Scholar 

  66. Richardson, D. B. (2009). Multistage modeling of leukemia in benzene workers: a simple approach to fitting the 2-stage clonal expansion model. American Journal of Epidemiology, 169, 78–85.

    Article  Google Scholar 

  67. Sullivan, P. A. (2007). Vermiculite, respiratory disease, and asbestos exposure in Libby, Montana. Update of a cohort mortality study. Environmental Health Perspectives, 115, 579–585.

    Article  Google Scholar 

  68. Surveillance, Epidemiology, and End Results (SEER) Program Research Data. (1973–2015). National Cancer Institute, DCCPS, Surveillance Research Program, released April 2018, based on the November 2017 submission. www.seer.cancer.gov.

  69. Thomas, D. C. (1983). Statistical methods for analyzing effects of temporal patterns of exposure on cancer risks. Scandinavian Journal of Work, Environment & Health, 9, 353–366.

    Article  Google Scholar 

  70. Thomas, D. C. (1988). Models for exposure-time-response relationships with applications to cancer epidemiology. Annual Review of Public Health, 9, 451–482.

    Article  Google Scholar 

  71. Thomas, D. C. (2014). Invited commentary: Is it time to retire the pack-years variable? Maybe not! American Journal of Epidemiology, 179(3), 299–302.

    Article  Google Scholar 

  72. Tomasetti, C., Li, L., & Vogelstein, B. (2017). Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science, 355(6331), 1330–1334.

    Article  Google Scholar 

  73. Tomasetti, C., Marchionni, L., Nowak, M. A., Parmigiani, G., & Vogelstein, B. (2015). Only three driver gene mutations are required for the development of lung and colorectal cancers. Proceedings of the National Academy of Sciences, 112(1), 118–123.

    Article  Google Scholar 

  74. Tomasetti, C., & Vogelstein, B. (2015). Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science, 347(6217), 78–81.

    Article  Google Scholar 

  75. Triebig, G. (2010). Implications of latency period between benzene exposure and development of leukemia – A synopsis of literature. Chemico-Biological Interactions, 184, 26–29.

    Article  Google Scholar 

  76. Vogelstein, B., & Kinzler, K. W. (2015). The path to cancer – Three strikes and you’re out. The New England Journal of Medicine, 373(20), 1895–1898.

    Article  Google Scholar 

  77. Whittemore, A. S. (1977). The age distribution of human cancer for carcinogenic exposures of varying intensity. American Journal of Epidemiology, 109, 709–718.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moolgavkar, S., Luebeck, G. (2020). Multistage Carcinogenesis: A Unified Framework for Cancer Data Analysis. In: Almudevar, A., Oakes, D., Hall, J. (eds) Statistical Modeling for Biological Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-34675-1_7

Download citation

Publish with us

Policies and ethics