Skip to main content

New Code-Based Privacy-Preserving Cryptographic Constructions

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2019 (ASIACRYPT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11922))

Abstract

Code-based cryptography has a long history but did suffer from periods of slow development. The field has recently attracted a lot of attention as one of the major branches of post-quantum cryptography. However, its subfield of privacy-preserving cryptographic constructions is still rather underdeveloped, e.g., important building blocks such as zero-knowledge range proofs and set membership proofs, and even proofs of knowledge of a hash preimage, have not been known under code-based assumptions. Moreover, almost no substantial technical development has been introduced in the last several years.

This work introduces several new code-based privacy-preserving cryptographic constructions that considerably advance the state-of-the-art in code-based cryptography. Specifically, we present 3 major contributions, each of which potentially yields various other applications. Our first contribution is a code-based statistically hiding and computationally binding commitment scheme with companion zero-knowledge (ZK) argument of knowledge of a valid opening that can be easily extended to prove that the committed bits satisfy other relations. Our second contribution is the first code-based zero-knowledge range argument for committed values, with communication cost logarithmic in the size of the range. A special feature of our range argument is that, while previous works on range proofs/arguments (in all branches of cryptography) only address ranges of non-negative integers, our protocol can handle signed fractional numbers, and hence, can potentially find a larger scope of applications. Our third contribution is the first code-based Merkle-tree accumulator supported by ZK argument of membership, which has been known to enable various interesting applications. In particular, it allows us to obtain the first code-based ring signatures and group signatures with logarithmic signature sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acar, T., Nguyen, L.: Revocation for delegatable anonymous credentials. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 423–440. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_26

    Chapter  Google Scholar 

  2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: STOC 1996, pp. 99–108. ACM (1996)

    Google Scholar 

  3. Alamélou, Q., Blazy, O., Cauchie, S., Gaborit, P.: A code-based group signature scheme. Des. Codes Crypt. 82(1–2), 469–493 (2017)

    Article  MathSciNet  Google Scholar 

  4. Applebaum, B., Haramaty, N., Ishai, Y., Kushilevitz, E., Vaikuntanathan, V.: Low-complexity cryptographic hash functions. In: ITCS 2017. LIPIcs, vol. 67, pp. 7:1–7:31. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  5. Au, M.H., Wu, Q., Susilo, W., Mu, Y.: Compact e-cash from bounded accumulator. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 178–195. Springer, Heidelberg (2006). https://doi.org/10.1007/11967668_12

    Chapter  Google Scholar 

  6. Augot, D., Finiasz, M., Sendrier, N.: A fast provably secure cryptographic hash function. IACR Cryptology ePrint Archive, 2003:230 (2003)

    Google Scholar 

  7. Augot, D., Finiasz, M., Sendrier, N.: A family of fast syndrome based cryptographic hash functions. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 64–83. Springer, Heidelberg (2005). https://doi.org/10.1007/11554868_6

    Chapter  Google Scholar 

  8. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_33

    Chapter  Google Scholar 

  9. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_24

    Chapter  Google Scholar 

  10. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better zero-knowledge proofs for lattice encryption and their application to group signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 551–572. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_29

    Chapter  Google Scholar 

  11. Bernstein, D.J., Lange, T., Peters, C., Schwabe, P.: Faster 2-regular information-set decoding. In: Chee, Y.M., et al. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 81–98. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20901-7_5

    Chapter  Google Scholar 

  12. Bernstein, D.J., Lange, T., Peters, C., Schwabe, P.: Really fast syndrome-based hashing. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 134–152. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21969-6_9

    Chapter  Google Scholar 

  13. Boneh, D., Eskandarian, S., Fisch, B.: Post-quantum group signatures from symmetric primitives. IACR Cryptology ePrint Archive, 2018:261 (2018)

    Google Scholar 

  14. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE, leakage resilience and circular security from new assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 535–564. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_20

    Chapter  Google Scholar 

  15. Brakerski, Z., Lyubashevsky, V., Vaikuntanathan, V., Wichs, D.: Worst-case hardness for LPN and cryptographic hashing via code smoothing. Electronic Colloquium on Computational Complexity (ECCC), 25:56 (2018)

    Google Scholar 

  16. Branco, P., Mateus, P.: A code-based linkable ring signature scheme. In: Baek, J., Susilo, W., Kim, J. (eds.) ProvSec 2018. LNCS, vol. 11192, pp. 203–219. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01446-9_12

    Chapter  Google Scholar 

  17. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)

    Article  MathSciNet  Google Scholar 

  18. Brickell, E.F., Chaum, D., Damgård, I.B., van de Graaf, J.: Gradual and verifiable release of a secret (extended abstract). In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 156–166. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2_11

    Chapter  Google Scholar 

  19. Camenisch, J., Chaabouni, R., shelat, a.: Efficient protocols for set membership and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 234–252. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_15

    Chapter  Google Scholar 

  20. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_18

    Chapter  Google Scholar 

  21. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_27

    Chapter  Google Scholar 

  22. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_7

    Chapter  Google Scholar 

  23. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_5

    Chapter  Google Scholar 

  24. Chaabouni, R., Lipmaa, H., Zhang, B.: A non-interactive range proof with constant communication. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 179–199. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3_14

    Chapter  Google Scholar 

  25. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_22

    Chapter  Google Scholar 

  26. Couteau, G., Peters, T., Pointcheval, D.: Removing the strong RSA assumption from arguments over the integers. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 321–350. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_11

    Chapter  Google Scholar 

  27. Dallot, L., Vergnaud, D.: Provably secure code-based threshold ring signatures. In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 222–235. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10868-6_13

    Chapter  Google Scholar 

  28. Derler, D., Ramacher, S., Slamanig, D.: Post-quantum zero-knowledge proofs for accumulators with applications to ring signatures from symmetric-key primitives. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 419–440. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_20

    Chapter  MATH  Google Scholar 

  29. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in Ad Hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_36

    Chapter  MATH  Google Scholar 

  30. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs: new techniques for shorter and faster constructions and applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 115–146. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_5

    Chapter  Google Scholar 

  31. Ezerman, M.F., Lee, H.T., Ling, S., Nguyen, K., Wang, H.: A provably secure group signature scheme from code-based assumptions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 260–285. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_12

    Chapter  Google Scholar 

  32. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  33. Gaborit, P., Hauteville, A., Phan, D.H., Tillich, J.-P.: Identity-based encryption from codes with rank metric. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 194–224. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_7

    Chapter  Google Scholar 

  34. Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP statements in zero-knowledge and a methodology of cryptographic protocol design (extended abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_11

    Chapter  Google Scholar 

  35. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the learning with errors assumption. In: ICS 2010, pp. 230–240. Tsinghua University Press (2010)

    Google Scholar 

  36. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MathSciNet  Google Scholar 

  37. González, A., Ráfols, C.: New techniques for non-interactive shuffle and range arguments. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 427–444. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_23

    Chapter  MATH  Google Scholar 

  38. Groth, J.: Evaluating security of voting schemes in the universal composability framework. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 46–60. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24852-1_4

    Chapter  MATH  Google Scholar 

  39. Groth, J.: Non-interactive zero-knowledge arguments for voting. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 467–482. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_32

    Chapter  Google Scholar 

  40. Groth, J.: Efficient zero-knowledge arguments from two-tiered homomorphic commitments. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 431–448. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_23

    Chapter  Google Scholar 

  41. Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient zero-knowledge proofs from learning parity with noise. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 663–680. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_40

    Chapter  Google Scholar 

  42. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_23

    Chapter  Google Scholar 

  43. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_13

    Chapter  Google Scholar 

  44. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Zero-knowledge arguments for matrix-vector relations and lattice-based group encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 101–131. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_4

    Chapter  Google Scholar 

  45. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumulators: logarithmic-size ring signatures and group signatures without trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_1

    Chapter  Google Scholar 

  46. Libert, B., Ling, S., Nguyen, K., Wang, H.: Lattice-based zero-knowledge arguments for integer relations. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 700–732. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_24

    Chapter  Google Scholar 

  47. Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5_26

    Chapter  Google Scholar 

  48. Lipmaa, H., Asokan, N., Niemi, V.: Secure vickrey auctions without threshold trust. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 87–101. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36504-4_7

    Chapter  Google Scholar 

  49. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital signatures. J. Cryptol. 31(3), 774–797 (2018)

    Article  MathSciNet  Google Scholar 

  50. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Deep Space Netw. Prog. Rep. 44, 114–116 (1978)

    Google Scholar 

  51. Aguilar Melchor, C., Cayrel, P.-L., Gaborit, P.: A new efficient threshold ring signature scheme based on coding theory. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 1–16. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88403-3_1

    Chapter  Google Scholar 

  52. Melchor, C.A., Cayrel, P.-L., Gaborit, P., Laguillaumie, F.: A new efficient threshold ring signature scheme based on coding theory. IEEE Trans. Inf. Theory 57(7), 4833–4842 (2011)

    Article  MathSciNet  Google Scholar 

  53. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_21

    Chapter  Google Scholar 

  54. Morozov, K., Takagi, T.: Zero-knowledge protocols for the McEliece encryption. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 180–193. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31448-3_14

    Chapter  Google Scholar 

  55. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC 1990, pp. 427–437. ACM (1990)

    Google Scholar 

  56. Nguyen, K., Tang, H., Wang, H., Zeng, N.: New code-based privacy-preserving cryptographic constructions. IACR Cryptology ePrint Archive, 2019:513 (2019)

    Google Scholar 

  57. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_19

    Chapter  Google Scholar 

  58. Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the McEliece cryptosystem without random oracles. Des. Codes Crypt. 49(1–3), 289–305 (2008)

    Article  MathSciNet  Google Scholar 

  59. Papamanthou, C., Shi, E., Tamassia, R., Yi, K.: Streaming authenticated data structures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 353–370. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_22

    Chapter  Google Scholar 

  60. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables. In: ACM-CCS 2008, pp. 437–448. ACM (2008)

    Google Scholar 

  61. Patterson, D.A., Hennessy, J.L.: Computer Organization and Design, Fifth Edition: The Hardware/Software Interface, 5th edn. Morgan Kaufmann Publishers Inc., Burlington (2013)

    Google Scholar 

  62. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32

    Chapter  Google Scholar 

  63. Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theory 42(6), 1757–1768 (1996)

    Article  MathSciNet  Google Scholar 

  64. Yu, Y., Zhang, J., Weng, J., Guo, C., Li, X.: Collision resistant hashing from learning parity with noise. IACR Cryptology ePrint Archive, 2017:1260 (2017)

    Google Scholar 

Download references

Acknowledgements

We thank Duong Hieu Phan, Benoît Libert, Nicolas Sendrier and Ayoub Otmani and the anonymous reviewers of ASIACRYPT 2019 for their comments and suggestions. The research is supported by the Singapore Ministry of Education under Research Grant MOE2016-T2-2-014(S). Khoa Nguyen is also supported by the Gopalakrishnan – NTU Presidential Postdoctoral Fellowship 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khoa Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, K., Tang, H., Wang, H., Zeng, N. (2019). New Code-Based Privacy-Preserving Cryptographic Constructions. In: Galbraith, S., Moriai, S. (eds) Advances in Cryptology – ASIACRYPT 2019. ASIACRYPT 2019. Lecture Notes in Computer Science(), vol 11922. Springer, Cham. https://doi.org/10.1007/978-3-030-34621-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34621-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34620-1

  • Online ISBN: 978-3-030-34621-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics