Skip to main content

Multi-Client Functional Encryption for Linear Functions in the Standard Model from LWE

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2019 (ASIACRYPT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11923))

Abstract

Multi-client functional encryption (MCFE) allows \(\ell \) clients to encrypt ciphertexts \((\mathbf {C}_{t,1},\mathbf {C}_{t,2},\ldots ,\mathbf {C}_{t,\ell })\) under some label. Each client can encrypt his own data \(X_i\) for a label t using a private encryption key \(\mathsf {ek}_i\) issued by a trusted authority in such a way that, as long as all \(\mathbf {C}_{t,i}\) share the same label t, an evaluator endowed with a functional key \(\mathsf {dk}_f\) can evaluate \(f(X_1,X_2,\ldots ,X_\ell )\) without learning anything else on the underlying plaintexts \(X_i\). Functional decryption keys can be derived by the central authority using the master secret key. Under the Decision Diffie-Hellman assumption, Chotard et al. (Asiacrypt 2018) recently described an adaptively secure MCFE scheme for the evaluation of linear functions over the integers. They also gave a decentralized variant (DMCFE) of their scheme which does not rely on a centralized authority, but rather allows encryptors to issue functional secret keys in a distributed manner. While efficient, their constructions both rely on random oracles in their security analysis. In this paper, we build a standard-model MCFE scheme for the same functionality and prove it fully secure under adaptive corruptions. Our proof relies on the Learning-With-Errors (\(\mathsf {LWE}\)) assumption and does not require the random oracle model. We also provide a decentralized variant of our scheme, which we prove secure in the static corruption setting (but for adaptively chosen messages) under the \(\mathsf {LWE}\) assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    While their decentralized scheme is only proved secure under static corruptions, its centralized version is proved secure under adaptive corruptions.

  2. 2.

    Introduced in [12], the notation \(\lfloor x \rfloor _p\) stands for the rounded value \(\lfloor (p/q) \cdot x \rfloor \in \mathbb {Z}_p\), where \( x \in \mathbb {Z}_q\), and \(p<q\).

  3. 3.

    The standard Leftover Hash Lemma cannot be applied since the source \(\lfloor \mathbf {A}(x^\star )^\top \cdot \mathbf {s} \rfloor _p\) is not guaranteed to be independent of the seed. A deterministic extractor based on k-wise independent functions [31] is thus needed in [55].

  4. 4.

    In [55], the multiplication of ciphertexts \(\{\mathbf {A}_{i,\tau [i]}\}_{i=1}^L\) was computed in a parallel fashion \(\mathbf {A}_{0} \cdot \prod _{i=1}^L \mathbf {G}^{-1}(\mathbf {A}_{i,\tau [i]})\) because their initial proof required the matrices \(\{ \mathbf {A}_{i,b}\}_{i,b}\) to be generated in such a way that \(\mathbf {G}^{-1}(\mathbf {A}_{i,b})\) was invertible over \(\mathbb {Z}_q\).

References

  1. Abdalla, M., Benhamouda, F., Gay, R.: From single-input to multi-client inner product functional encryption. In: Galbraith, S., Moriai, S. (eds.) ASIACRYPT 2019, LNCS, vol. 11923, pp. 552–582. Springer, Heidelberg (2019)

    Google Scholar 

  2. Abdalla, M., Benhamouda, F., Kohlweiss, M., Waldner, H.: Decentralizing inner-product functional encryption. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 128–157. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_5

    Chapter  Google Scholar 

  3. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_33

    Chapter  Google Scholar 

  4. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional encryption for inner products: function-hiding realizations and constructions without pairings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 597–627. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_20

    Chapter  Google Scholar 

  5. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_21

    Chapter  Google Scholar 

  6. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

    Chapter  MATH  Google Scholar 

  7. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_2

    Chapter  Google Scholar 

  8. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_12

    Chapter  Google Scholar 

  9. Agrawal, S., Rosen, A.: Functional encryption for bounded collusions, revisited. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 173–205. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_7

    Chapter  Google Scholar 

  10. Baltico, C., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption for quadratic functions with applications to predicate encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 67–98. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_3

    Chapter  Google Scholar 

  11. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_20

    Chapter  Google Scholar 

  12. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_42

    Chapter  Google Scholar 

  13. Benhamouda, F., Bourse, F., Lipmaa, H.: CCA-secure inner-product functional encryption from projective hash functions. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 36–66. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_2

    Chapter  Google Scholar 

  14. Benhamouda, F., Joye, M., Libert, B.: A framework for privacy-preserving aggregation of time-series data. ACM Trans. Inf. Syst. Secur. (ACM-TISSEC) 18(3), 10:1–10:21 (2016)

    Google Scholar 

  15. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_27

    Chapter  Google Scholar 

  16. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_30

    Chapter  Google Scholar 

  17. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  18. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_23

    Chapter  Google Scholar 

  19. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16

    Chapter  Google Scholar 

  20. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_29

    Chapter  Google Scholar 

  21. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_27

    Chapter  Google Scholar 

  22. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the private-key setting: stronger security from weaker assumptions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 852–880. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_30

    Chapter  MATH  Google Scholar 

  23. Chan, T., Shi, E., Song, D.: Privacy-preserving stream aggregation with fault tolerance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3_15

    Chapter  Google Scholar 

  24. Chandran, N., Goyal, V., Jain, A., Sahai, A.: Functional encryption: decentralised and delegatable. Cryptology ePrint Archive: Report 2015/1017

    Google Scholar 

  25. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_28

    Chapter  Google Scholar 

  26. Chase, M., Chow, S.: Improving privacy and security in multi-authority attribute-based encryption. In: ACM-CCS (2009)

    Google Scholar 

  27. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.-H., Pointcheval, D.: Decentralized multi-client functional encryption for inner product. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 703–732. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_24

    Chapter  Google Scholar 

  28. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.-H., Pointcheval, D.: Multi-client functional encryption with repetition for inner product. Cryptology ePrint Archive: Report 2018/1021 (2018)

    Google Scholar 

  29. Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3_32

    Chapter  Google Scholar 

  30. Datta, P., Okamoto, T., Tomida, J.: Full-hiding (Unbounded) multi-input inner product functional encryption from the k-linear assumption. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 245–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_9

    Chapter  Google Scholar 

  31. Dodis, Y.: Exposure-resilient cryptography. Ph.D. thesis, MIT (2000)

    Google Scholar 

  32. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_40

    Chapter  Google Scholar 

  33. Freire, E., Hofheinz, D., Paterson, K., Striecks, C.: Programmable hash functions in the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_28

    Chapter  MATH  Google Scholar 

  34. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS (2013)

    Google Scholar 

  35. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC (2008)

    Google Scholar 

  36. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

    Chapter  Google Scholar 

  37. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_32

    Chapter  Google Scholar 

  38. Goldwasser, S., Goyal, V., Jain, A., Sahai, A.: Multi-input functional encryption. Cryptology ePrint Archive: Report 2013/727 (2013)

    Google Scholar 

  39. Goldwasser, S., Kalai, Y., Peikert, C., Vaikuntanathan, V.: Robustness of the learning with errors assumption. In: ICS (2010)

    Google Scholar 

  40. Goldwasser, S., Tauman Kalai, Y., Popa, R., Vaikuntanathan, V., Zeldovich, N.: How to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_30

    Chapter  Google Scholar 

  41. Goldwasser, S., Tauman Kalai, Y., Popa, R., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: STOC (2013)

    Google Scholar 

  42. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_11

    Chapter  Google Scholar 

  43. Gordon, S., Katz, J., Liu, F.-H., Shi, E., Zhou, H.-S.: Multi-input functional encryption. Cryptology ePrint Archive: Report 2013/774 (2014)

    Google Scholar 

  44. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM-CCS (2006)

    Google Scholar 

  45. Hanaoka, G., Matsuda, T., Schuldt, J.: On the impossibility of constructing efficient key encapsulation and programmable hash functions in prime order groups. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 812–831. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_47

    Chapter  MATH  Google Scholar 

  46. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_2

    Chapter  Google Scholar 

  47. Jager, T.: Verifiable random functions from weaker assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 121–143. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_5

    Chapter  Google Scholar 

  48. Joye, M., Libert, B.: A scalable scheme for privacy-preserving aggregation of time-series data. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 111–125. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_10

    Chapter  MATH  Google Scholar 

  49. Katsumata, S., Yamada, S.: Partitioning via non-linear polynomial functions: more compact IBEs from ideal lattices and bilinear maps. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 682–712. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_23

    Chapter  Google Scholar 

  50. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_9

    Chapter  Google Scholar 

  51. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_4

    Chapter  Google Scholar 

  52. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_31

    Chapter  Google Scholar 

  53. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achieving full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_12

    Chapter  Google Scholar 

  54. Libert, B., Sakzad, A., Stehlé, D., Steinfeld, R.: All-but-many lossy trapdoor functions and selective opening chosen-ciphertext security from LWE. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 332–364. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_12

    Chapter  Google Scholar 

  55. Libert, B., Stehlé, D., Titiu, R.: Adaptively secure distributed PRFs from \(\sf LWE\). In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 391–421. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_15

    Chapter  Google Scholar 

  56. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_20

    Chapter  Google Scholar 

  57. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  58. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and KDCs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_23

    Chapter  Google Scholar 

  59. Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_11

    Chapter  Google Scholar 

  60. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC (2005)

    Google Scholar 

  61. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public keys. In: ACM-CCS (2010)

    Google Scholar 

  62. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27

    Chapter  Google Scholar 

  63. Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput. Sci. 53(2–3), 201–224 (1987)

    Article  MathSciNet  Google Scholar 

  64. Shi, E., Chan, T., Rieffel, E., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: NDSS (2011)

    Google Scholar 

  65. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_4

    Chapter  Google Scholar 

  66. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_14

    Chapter  Google Scholar 

  67. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_26

    Chapter  Google Scholar 

Download references

Acknowledgements

Part of this work was funded by the French ANR ALAMBIC project (ANR-16-CE39-0006) and by BPI-France in the context of the national project RISQ (P141580). This work was also supported by the European Union PROMETHEUS project (Horizon 2020 Research and Innovation Program, grant 780701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Libert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Libert, B., Ţiţiu, R. (2019). Multi-Client Functional Encryption for Linear Functions in the Standard Model from LWE. In: Galbraith, S., Moriai, S. (eds) Advances in Cryptology – ASIACRYPT 2019. ASIACRYPT 2019. Lecture Notes in Computer Science(), vol 11923. Springer, Cham. https://doi.org/10.1007/978-3-030-34618-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34618-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34617-1

  • Online ISBN: 978-3-030-34618-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics