Skip to main content

Role of Heparanase in Macrophage Activation

  • Chapter
  • First Online:
Heparanase

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1221))

Abstract

Macrophages represent one of the most diverse immunocyte populations, constantly shifting between various phenotypes/functional states. In addition to execution of vital functions in normal physiological conditions, macrophages represent a key contributing factor in the pathogenesis of some of the most challenging diseases, such as chronic inflammatory disorders, diabetes and its complications, and cancer. Macrophage polarization studies focus primarily on cytokine-mediated mechanisms. However, to explore the full spectrum of macrophage action, additional, non-cytokine pathways responsible for altering macrophage phenotype have to be taken into consideration as well. Heparanase, the only known mammalian endoglycosidase that cleaves heparan sulfate glycosaminoglycans, has been shown to contribute to the altered macrophage phenotypes in vitro and in numerous animal models of inflammatory conditions, occurring either in the presence of microbial products or in the setting of non-infectious “aseptic” inflammation. Here we discuss the involvement of heparanase in shaping macrophage responses and provide information that may help to establish the rationale for heparanase-targeting interventions aimed at preventing abnormal macrophage activation in various disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Epelman, S., Lavine, K. J., & Randolph, G. J. (2014). Origin and functions of tissue macrophages. Immunity, 41(1), 21–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Murray, P. J. (2017). Macrophage polarization. Annual Review of Physiology, 79, 541–566.

    Article  CAS  PubMed  Google Scholar 

  3. Wynn, T. A., Chawla, A., & Pollard, J. W. (2013). Macrophage biology in development, homeostasis and disease. Nature, 496(7446), 445–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ginhoux, F., Schultze, J. L., Murray, P. J., Ochando, J., & Biswas, S. K. (2016). New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nature Immunology, 17(1), 34–40.

    Article  CAS  PubMed  Google Scholar 

  5. Quail, D. F., & Joyce, J. A. (2017). Molecular pathways: Deciphering mechanisms of resistance to macrophage-targeted therapies. Clinical Cancer Research, 23(4), 876–884.

    Article  CAS  PubMed  Google Scholar 

  6. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L., & Allavena, P. (2017). Tumour-associated macrophages as treatment targets in oncology. Nature Reviews. Clinical Oncology, 14(7), 399–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23(11), 549–555.

    Article  CAS  PubMed  Google Scholar 

  8. Li, C., Xu, M. M., Wang, K., Adler, A. J., Vella, A. T., & Zhou, B. (2018). Macrophage polarization and meta-inflammation. Translational Research, 191, 29–44.

    Article  CAS  PubMed  Google Scholar 

  9. Sasaki, N., Higashi, N., Taka, T., Nakajima, M., & Irimura, T. (2004). Cell surface localization of heparanase on macrophages regulates degradation of extracellular matrix heparan sulfate. Journal of Immunology, 172(6), 3830–3835.

    Article  CAS  Google Scholar 

  10. Fridman, R., Lider, O., Naparstek, Y., Fuks, Z., Vlodavsky, I., & Cohen, I. R. (1987). Soluble antigen induces T lymphocytes to secrete an endoglycosidase that degrades the heparan sulfate moiety of subendothelial extracellular matrix. Journal of Cellular Physiology, 130(1), 85–92.

    Article  CAS  PubMed  Google Scholar 

  11. Vlodavsky, I., Eldor, A., Haimovitz-Friedman, A., Matzner, Y., Ishai-Michaeli, R., Lider, O., et al. (1992). Expression of heparanase by platelets and circulating cells of the immune system: Possible involvement in diapedesis and extravasation. Invasion & Metastasis, 12(2), 112–127.

    CAS  Google Scholar 

  12. Putz, E. M., Mayfosh, A. J., Kos, K., Barkauskas, D. S., Nakamura, K., Town, L., et al. (2017). NK cell heparanase controls tumor invasion and immune surveillance. The Journal of Clinical Investigation, 127(7), 2777–2788.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Caruana, I., Savoldo, B., Hoyos, V., Weber, G., Liu, H., Kim, E. S., et al. (2015). Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nature Medicine, 21(5), 524–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, R. W., Freeman, C., Yu, D., Hindmarsh, E. J., Tymms, K. E., Parish, C. R., et al. (2008). Dramatic regulation of heparanase activity and angiogenesis gene expression in synovium from patients with rheumatoid arthritis. Arthritis and Rheumatism, 58(6), 1590–1600.

    Article  CAS  PubMed  Google Scholar 

  15. Rao, G., Ding, H. G., Huang, W., Le, D., Maxhimer, J. B., Oosterhof, A., et al. (2011). Reactive oxygen species mediate high glucose-induced heparanase-1 production and heparan sulphate proteoglycan degradation in human and rat endothelial cells: A potential role in the pathogenesis of atherosclerosis. Diabetologia, 54(6), 1527–1538.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, F., Wan, A., & Rodrigues, B. (2013). The function of heparanase in diabetes and its complications. Canadian Journal of Diabetes, 37(5), 332–338.

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt, E. P., Yang, Y., Janssen, W. J., Gandjeva, A., Perez, M. J., Barthel, L., et al. (2012). The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nature Medicine, 18(8), 1217–1223.

    Article  CAS  PubMed  Google Scholar 

  18. Lerner, I., Hermano, E., Zcharia, E., Rodkin, D., Bulvik, R., Doviner, V., et al. (2011). Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. The Journal of Clinical Investigation, 121(5), 1709–1721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lerner, I., Zcharia, E., Neuman, T., Hermano, E., Rubinstein, A. M., Vlodavsky, I., et al. (2014). Heparanase is preferentially expressed in human psoriatic lesions and induces development of psoriasiform skin inflammation in mice. Cellular and Molecular Life Sciences, 71, 2347–2357.

    Article  CAS  PubMed  Google Scholar 

  20. Edovitsky, E., Lerner, I., Zcharia, E., Peretz, T., Vlodavsky, I., & Elkin, M. (2006). Role of endothelial heparanase in delayed-type hypersensitivity. Blood, 107(9), 3609–3616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gil, N., Goldberg, R., Neuman, T., Garsen, M., Zcharia, E., Rubinstein, A. M., et al. (2012). Heparanase is essential for the development of diabetic nephropathy in mice. Diabetes, 61(1), 208–216.

    Article  CAS  PubMed  Google Scholar 

  22. Goldberg, R., Rubinstein, A. M., Gil, N., Hermano, E., Li, J. P., van der Vlag, J., et al. (2014). Role of heparanase-driven inflammatory cascade in pathogenesis of diabetic nephropathy. Diabetes, 63(12), 4302–4313.

    Article  CAS  PubMed  Google Scholar 

  23. Benhamron, S., Nechushtan, H., Verbovetski, I., Krispin, A., Abboud-Jarrous, G., Zcharia, E., et al. (2006). Translocation of active heparanase to cell surface regulates degradation of extracellular matrix heparan sulfate upon transmigration of mature monocyte-derived dendritic cells. Journal of Immunology, 176(11), 6417–6424.

    Article  CAS  Google Scholar 

  24. Benhamron, S., Reiner, I., Zcharia, E., Atallah, M., Grau, A., Vlodavsky, I., et al. (2012). Dissociation between mature phenotype and impaired transmigration in dendritic cells from heparanase-deficient mice. PLoS One, 7(5), e35602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Blich, M., Golan, A., Arvatz, G., Sebbag, A., Shafat, I., Sabo, E., et al. (2013). Macrophage activation by Heparanase is mediated by TLR-2 and TLR-4 and associates with plaque progression. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(2), 56–65.

    Article  CAS  Google Scholar 

  26. Massena, S., Christoffersson, G., Hjertstrom, E., Zcharia, E., Vlodavsky, I., Ausmees, N., et al. (2010). A chemotactic gradient sequestered on endothelial heparan sulfate induces directional intraluminal crawling of neutrophils. Blood, 116(11), 1924–1931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang B, Jia J, Zhang X, Zcharia E, Vlodavsky I, Pejler G, et al. Heparanase affects secretory granule homeostasis of murine mast cells through degrading heparin. The Journal of Allergy and Clinical Immunology 2011;128(6):1310–1317 e8.

    Google Scholar 

  28. Masola, V., Zaza, G., Bellin, G., Dall’Olmo, L., Granata, S., Vischini, G., et al. (2018). Heparanase regulates the M1 polarization of renal macrophages and their crosstalk with renal epithelial tubular cells after ischemia/reperfusion injury. The FASEB Journal, 32(2), 742–756.

    Article  CAS  PubMed  Google Scholar 

  29. Brunn, G. J., Bungum, M. K., Johnson, G. B., & Platt, J. L. (2005). Conditional signaling by toll-like receptor 4. The FASEB Journal, 19(7), 872–874.

    Article  CAS  PubMed  Google Scholar 

  30. Johnson, G. B., Brunn, G. J., Kodaira, Y., & Platt, J. L. (2002). Receptor-mediated monitoring of tissue Well-being via detection of soluble heparan sulfate by toll-like receptor 4. Journal of Immunology, 168(10), 5233–5239.

    Article  CAS  Google Scholar 

  31. Hermano, E., Meirovitz, A., Meir, K., Nussbaum, G., Appelbaum, L., Peretz, T., et al. (2014). Macrophage polarization in pancreatic carcinoma: Role of heparanase enzyme. Journal of the National Cancer Institute, 106(12).

    Google Scholar 

  32. Kato, M., Wang, H., Kainulainen, V., Fitzgerald, M. L., Ledbetter, S., Ornitz, D. M., et al. (1998). Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nature Medicine, 4(6), 691–697.

    Article  CAS  PubMed  Google Scholar 

  33. Goodall, K. J., Poon, I. K., Phipps, S., & Hulett, M. D. (2014). Soluble Heparan Sulfate fragments generated by Heparanase trigger the release of pro-inflammatory cytokines through TLR-4. PLoS One, 9(10), e109596.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Akbarshahi, H., Axelsson, J. B., Said, K., Malmstrom, A., Fischer, H., & Andersson, R. (2011). TLR4 dependent heparan sulphate-induced pancreatic inflammatory response is IRF3-mediated. Journal of Translational Medicine, 9, 219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Torres, J., Mehandru, S., Colombel, J. F., & Peyrin-Biroulet, L. (2017). Crohn’s disease. Lancet, 389(10080), 1741–1755.

    Article  PubMed  Google Scholar 

  36. Ungaro, R., Mehandru, S., Allen, P. B., Peyrin-Biroulet, L., & Colombel, J. F. (2017). Ulcerative colitis. Lancet, 389(10080), 1756–1770.

    Article  PubMed  Google Scholar 

  37. Mahida, Y. R. (2000). The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflammatory Bowel Diseases, 6(1), 21–33.

    Article  CAS  PubMed  Google Scholar 

  38. Krieglstein, C. F., Cerwinka, W. H., Sprague, A. G., Laroux, F. S., Grisham, M. B., Koteliansky, V. E., et al. (2002). Collagen-binding integrin alpha1beta1 regulates intestinal inflammation in experimental colitis. The Journal of Clinical Investigation, 110(12), 1773–1782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kamada, N., Hisamatsu, T., Okamoto, S., Sato, T., Matsuoka, K., Arai, K., et al. (2005). Abnormally differentiated subsets of intestinal macrophage play a key role in Th1-dominant chronic colitis through excess production of IL-12 and IL-23 in response to bacteria. Journal of Immunology, 175(10), 6900–6908.

    Article  CAS  Google Scholar 

  40. Takeda, K., Clausen, B. E., Kaisho, T., Tsujimura, T., Terada, N., Forster, I., et al. (1999). Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity, 10(1), 39–49.

    Article  CAS  PubMed  Google Scholar 

  41. Xavier, R. J., & Podolsky, D. K. (2007). Unravelling the pathogenesis of inflammatory bowel disease. Nature, 448(7152), 427–434.

    Article  CAS  PubMed  Google Scholar 

  42. Smith, P. D., Ochsenbauer-Jambor, C., & Smythies, L. E. (2005). Intestinal macrophages: Unique effector cells of the innate immune system. Immunological Reviews, 206, 149–159.

    Article  CAS  PubMed  Google Scholar 

  43. Bain, C. C., & Mowat, A. M. (2014). Macrophages in intestinal homeostasis and inflammation. Immunological Reviews, 260(1), 102–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Menzel, K., Hausmann, M., Obermeier, F., Schreiter, K., Dunger, N., Bataille, F., et al. (2006). Cathepsins B, L and D in inflammatory bowel disease macrophages and potential therapeutic effects of cathepsin inhibition in vivo. Clinical and Experimental Immunology, 146(1), 169–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Podolsky, D. K. (2002). Inflammatory bowel disease. The New England Journal of Medicine, 347(6), 417–429.

    Article  CAS  PubMed  Google Scholar 

  46. Bernstein, C. N. (2015). Treatment of IBD: Where we are and where we are going. The American Journal of Gastroenterology, 110(1), 114–126.

    Article  PubMed  Google Scholar 

  47. Olivera, P., Danese, S., & Peyrin-Biroulet, L. (2017). Next generation of small molecules in inflammatory bowel disease. Gut, 66(2), 199–209.

    Article  CAS  PubMed  Google Scholar 

  48. Karin, M., & Greten, F. R. (2005). NF-kappaB: Linking inflammation and immunity to cancer development and progression. Nature Reviews. Immunology, 5(10), 749–759.

    Article  CAS  PubMed  Google Scholar 

  49. Popivanova, B. K., Kitamura, K., Wu, Y., Kondo, T., Kagaya, T., Kaneko, S., et al. (2008). Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. The Journal of Clinical Investigation, 118(2), 560–570.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Becker, C., Fantini, M. C., Wirtz, S., Nikolaev, A., Lehr, H. A., Galle, P. R., et al. (2005). IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle, 4(2), 217–220.

    Article  CAS  PubMed  Google Scholar 

  51. Waterman, M., Ben-Izhak, O., Eliakim, R., Groisman, G., Vlodavsky, I., & Ilan, N. (2007). Heparanase upregulation by colonic epithelium in inflammatory bowel disease. Modern Pathology, 20(1), 8–14.

    Article  CAS  PubMed  Google Scholar 

  52. Quaglio, A. E., Castilho, A. C., & Di Stasi, L. C. (2015). Experimental evidence of heparanase, Hsp70 and NF-kappaB gene expression on the response of anti-inflammatory drugs in TNBS-induced colonic inflammation. Life Sciences, 141, 179–187.

    Article  CAS  PubMed  Google Scholar 

  53. Friedmann, Y., Vlodavsky, I., Aingorn, H., Aviv, A., Peretz, T., Pecker, I., et al. (2000). Expression of heparanase in normal, dysplastic, and neoplastic human colonic mucosa and stroma: Evidence for its role in colonic tumorigenesis [in process citation]. The American Journal of Pathology, 157(4), 1167–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Martinez, F. O., Sica, A., Mantovani, A., & Locati, M. (2008). Macrophage activation and polarization. Frontiers in Bioscience, 13, 453–461.

    Article  CAS  PubMed  Google Scholar 

  55. Serhan, C. N., & Savill, J. (2005). Resolution of inflammation: The beginning programs the end. Nature Immunology, 6(12), 1191–1197.

    Article  CAS  PubMed  Google Scholar 

  56. Nathan, C., & Ding, A. (2010). Nonresolving inflammation. Cell, 140(6), 871–882.

    Article  CAS  PubMed  Google Scholar 

  57. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sanchez-Munoz, F., Dominguez-Lopez, A., & Yamamoto-Furusho, J. K. (2008). Role of cytokines in inflammatory bowel disease. World Journal of Gastroenterology, 14(27), 4280–4288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Qian, B. Z., & Pollard, J. W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell, 141(1), 39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Biswas, S. K., & Mantovani, A. (2010). Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nature Immunology, 11(10), 889–896.

    Article  CAS  PubMed  Google Scholar 

  61. Greten, F. R., Eckmann, L., Greten, T. F., Park, J. M., Li, Z. W., Egan, L. J., et al. (2004). IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell, 118(3), 285–296.

    Article  CAS  PubMed  Google Scholar 

  62. Fukata, M., Chen, A., Vamadevan, A. S., Cohen, J., Breglio, K., Krishnareddy, S., et al. (2007). Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology, 133(6), 1869–1881.

    Article  CAS  PubMed  Google Scholar 

  63. Fukata, M., Hernandez, Y., Conduah, D., Cohen, J., Chen, A., Breglio, K., et al. (2009). Innate immune signaling by toll-like receptor-4 (TLR4) shapes the inflammatory microenvironment in colitis-associated tumors. Inflammatory Bowel Diseases, 15(7), 997–1006.

    Article  PubMed  Google Scholar 

  64. Subbaramaiah, K., Yoshimatsu, K., Scherl, E., Das, K. M., Glazier, K. D., Golijanin, D., et al. (2004). Microsomal prostaglandin E synthase-1 is overexpressed in inflammatory bowel disease. Evidence for involvement of the transcription factor Egr-1. The Journal of Biological Chemistry, 279(13), 12647–12658.

    Article  CAS  PubMed  Google Scholar 

  65. de Mestre, A. M., Rao, S., Hornby, J. R., Soe-Htwe, T., Khachigian, L. M., & Hulett, M. D. (2005). Early growth response gene 1 (EGR1) regulates heparanase gene transcription in tumor cells. The Journal of Biological Chemistry, 280(42), 35136–35147.

    Article  PubMed  CAS  Google Scholar 

  66. Abboud-Jarrous, G., Atzmon, R., Peretz, T., Palermo, C., Gadea, B. B., Joyce, J. A., et al. (2008). Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. The Journal of Biological Chemistry, 283(26), 18167–18176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Abboud-Jarrous, G., Rangini-Guetta, Z., Aingorn, H., Atzmon, R., Elgavish, S., Peretz, T., et al. (2005). Site-directed mutagenesis, proteolytic cleavage, and activation of human proheparanase. The Journal of Biological Chemistry, 280(14), 13568–13575.

    Article  CAS  PubMed  Google Scholar 

  68. Fiebiger, E., Maehr, R., Villadangos, J., Weber, E., Erickson, A., Bikoff, E., et al. (2002). Invariant chain controls the activity of extracellular cathepsin L. The Journal of Experimental Medicine, 196(9), 1263–1269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Baker, A. B., Groothuis, A., Jonas, M., Ettenson, D. S., Shazly, T., Zcharia, E., et al. (2009). Heparanase alters arterial structure, mechanics, and repair following endovascular stenting in mice. Circulation Research, 104(3), 380–387.

    Article  CAS  PubMed  Google Scholar 

  70. Farrow, B., & Evers, B. M. (2002). Inflammation and the development of pancreatic cancer. Surgical Oncology, 10(4), 153–169.

    Article  PubMed  Google Scholar 

  71. Clark, C. E., Hingorani, S. R., Mick, R., Combs, C., Tuveson, D. A., & Vonderheide, R. H. (2007). Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Research, 67(19), 9518–9527.

    Article  CAS  PubMed  Google Scholar 

  72. Feig, C., Gopinathan, A., Neesse, A., Chan, D. S., Cook, N., & Tuveson, D. A. (2012). The pancreas cancer microenvironment. Clinical Cancer Research, 18(16), 4266–4276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mitchem, J. B., Brennan, D. J., Knolhoff, B. L., Belt, B. A., Zhu, Y., Sanford, D. E., et al. (2013). Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Research, 73(3), 1128–1141.

    Article  CAS  PubMed  Google Scholar 

  74. Baumgart, S., Ellenrieder, V., & Fernandez-Zapico, M. E. (2013). Oncogenic transcription factors: Cornerstones of inflammation-linked pancreatic carcinogenesis. Gut, 62(2), 310–316.

    Article  CAS  PubMed  Google Scholar 

  75. Ino, Y., Yamazaki-Itoh, R., Shimada, K., Iwasaki, M., Kosuge, T., Kanai, Y., et al. (2013). Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. British Journal of Cancer, 108(4), 914–923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Solinas, G., Germano, G., Mantovani, A., & Allavena, P. (2009). Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. Journal of Leukocyte Biology, 86(5), 1065–1073.

    Article  CAS  PubMed  Google Scholar 

  77. Lesina, M., Kurkowski, M. U., Ludes, K., Rose-John, S., Treiber, M., Kloppel, G., et al. (2011). Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell, 19(4), 456–469.

    Article  CAS  PubMed  Google Scholar 

  78. Fukuda, A., Wang, S. C., JPt, M., Folias, A. E., Liou, A., Kim, G. E., et al. (2011). Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell, 19(4), 441–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.

    Article  CAS  PubMed  Google Scholar 

  80. Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454(7203), 436–444.

    Article  CAS  PubMed  Google Scholar 

  81. Kim, D. W., Min, H. S., Lee, K. H., Kim, Y. J., Oh, D. Y., Jeon, Y. K., et al. (2008). High tumour islet macrophage infiltration correlates with improved patient survival but not with EGFR mutations, gene copy number or protein expression in resected non-small cell lung cancer. British Journal of Cancer, 98(6), 1118–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Park, H. D., Lee, Y., Oh, Y. K., Jung, J. G., Park, Y. W., Myung, K., et al. (2011). Pancreatic adenocarcinoma upregulated factor promotes metastasis by regulating TLR/CXCR4 activation. Oncogene, 30(2), 201–211.

    Article  CAS  PubMed  Google Scholar 

  83. Yu, L., Wang, L., & Chen, S. (2012). Exogenous or endogenous toll-like receptor ligands: Which is the MVP in tumorigenesis? Cellular and Molecular Life Sciences, 69(6), 935–949.

    Article  CAS  PubMed  Google Scholar 

  84. Kim, S., Takahashi, H., Lin, W. W., Descargues, P., Grivennikov, S., Kim, Y., et al. (2009). Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature, 457(7225), 102–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cocco, R. E., & Ucker, D. S. (2001). Distinct modes of macrophage recognition for apoptotic and necrotic cells are not specified exclusively by phosphatidylserine exposure. Molecular Biology of the Cell, 12(4), 919–930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim, A. W., Xu, X., Hollinger, E. F., Gattuso, P., Godellas, C. V., & Prinz, R. A. (2002). Human heparanase-1 gene expression in pancreatic adenocarcinoma. Journal of Gastrointestinal Surgery, 6(2), 167–172.

    Article  PubMed  Google Scholar 

  87. Hoffmann AC, Mori R, Vallbohmer D, Brabender J, Drebber U, Baldus SE, et al. High expression of heparanase is significantly associated with dedifferentiation and lymph node metastasis in patients with pancreatic ductal adenocarcinomas and correlated to PDGFA and via HIF1a to HB-EGF and bFGF. Journal of Gastrointestinal Surgery 2008;12(10):1674–1681; discussion 81–2.

    Google Scholar 

  88. Koliopanos, A., Friess, H., Kleeff, J., Shi, X., Liao, Q., Pecker, I., et al. (2001). Heparanase expression in primary and metastatic pancreatic cancer. Cancer Research, 61(12), 4655–4659.

    CAS  PubMed  Google Scholar 

  89. Quiros, R. M., Rao, G., Plate, J., Harris, J. E., Brunn, G. J., Platt, J. L., et al. (2006). Elevated serum heparanase-1 levels in patients with pancreatic carcinoma are associated with poor survival. Cancer, 106(3), 532–540.

    Article  CAS  PubMed  Google Scholar 

  90. Rohloff, J., Zinke, J., Schoppmeyer, K., Tannapfel, A., Witzigmann, H., Mossner, J., et al. (2002). Heparanase expression is a prognostic indicator for postoperative survival in pancreatic adenocarcinoma. British Journal of Cancer, 86(8), 1270–1275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Boels, M. G. S., Koudijs, A., Avramut, M. C., Sol, W., Wang, G., van Oeveren-Rietdijk, A. M., et al. (2017). Systemic monocyte chemotactic Protein-1 inhibition modifies renal macrophages and restores glomerular endothelial Glycocalyx and barrier function in diabetic nephropathy. The American Journal of Pathology, 187(11), 2430–2440.

    Article  CAS  PubMed  Google Scholar 

  92. Boels, M. G., Avramut, M. C., Koudijs, A., Dane, M. J., Lee, D. H., van der Vlag, J., et al. (2016). Atrasentan reduces albuminuria by restoring the glomerular endothelial Glycocalyx barrier in diabetic nephropathy. Diabetes, 65(8), 2429–2439.

    Article  CAS  PubMed  Google Scholar 

  93. Garsen, M., Benner, M., Dijkman, H. B., van Kuppevelt, T. H., Li, J. P., Rabelink, T. J., et al. (2016). Heparanase is essential for the development of acute experimental glomerulonephritis. The American Journal of Pathology, 186(4), 805–815.

    Article  CAS  PubMed  Google Scholar 

  94. Ibrahim, H. N., & Hostetter, T. H. (1997). Diabetic nephropathy. Journal of the American Society of Nephrology., 8(3), 487–493.

    CAS  PubMed  Google Scholar 

  95. Atkins, R. C., & Zimmet, P. (2010). Diabetic kidney disease: Act now or pay later. Journal of the American Society of Hypertension, 4(1), 3–6.

    Article  PubMed  Google Scholar 

  96. Gilbertson, D. T., Liu, J., Xue, J. L., Louis, T. A., Solid, C. A., Ebben, J. P., et al. (2005). Projecting the number of patients with end-stage renal disease in the United States to the year 2015. Journal of the American Society of Nephrology, 16(12), 3736–3741.

    Article  PubMed  Google Scholar 

  97. Ritz, E., Rychlik, I., Locatelli, F., & Halimi, S. (1999). End-stage renal failure in type 2 diabetes: A medical catastrophe of worldwide dimensions. American Journal of Kidney Diseases, 34(5), 795–808.

    Article  CAS  PubMed  Google Scholar 

  98. Lim, A. (2014). Diabetic nephropathy - complications and treatment. International Journal of Nephrology and Renovascular Disease, 7, 361–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Forbes, J. M., & Cooper, M. E. (2013). Mechanisms of diabetic complications. Physiological Reviews, 93(1), 137–188.

    Article  CAS  PubMed  Google Scholar 

  100. Soldatos, G., & Cooper, M. E. (2008). Diabetic nephropathy: Important pathophysiologic mechanisms. Diabetes Research and Clinical Practice, 82(Suppl 1), S75–S79.

    Article  CAS  PubMed  Google Scholar 

  101. Navarro-Gonzalez, J. F., & Mora-Fernandez, C. (2008). The role of inflammatory cytokines in diabetic nephropathy. Journal of the American Society of Nephrology, 19(3), 433–442.

    Article  CAS  PubMed  Google Scholar 

  102. Navarro-Gonzalez, J. F., Jarque, A., Muros, M., Mora, C., & Garcia, J. (2009). Tumor necrosis factor-alpha as a therapeutic target for diabetic nephropathy. Cytokine & Growth Factor Reviews, 20(2), 165–173.

    Article  CAS  Google Scholar 

  103. Tuttle, K. R. (2005). Linking metabolism and immunology: Diabetic nephropathy is an inflammatory disease. Journal of the American Society of Nephrology, 16(6), 1537–1538.

    Article  PubMed  Google Scholar 

  104. Chow, F., Ozols, E., Nikolic-Paterson, D. J., Atkins, R. C., & Tesch, G. H. (2004). Macrophages in mouse type 2 diabetic nephropathy: Correlation with diabetic state and progressive renal injury. Kidney International, 65(1), 116–128.

    Article  CAS  PubMed  Google Scholar 

  105. Nguyen, D., Ping, F., Mu, W., Hill, P., Atkins, R. C., & Chadban, S. J. (2006). Macrophage accumulation in human progressive diabetic nephropathy. Nephrology (Carlton, Vic.), 11(3), 226–231.

    Article  Google Scholar 

  106. Shikata, K., & Makino, H. (2001). Role of macrophages in the pathogenesis of diabetic nephropathy. Contributions to Nephrology, 134, 46–54.

    Article  CAS  Google Scholar 

  107. Tesch, G. H. (2007). Role of macrophages in complications of type 2 diabetes. Clinical and Experimental Pharmacology & Physiology, 34(10), 1016–1019.

    Article  CAS  Google Scholar 

  108. Tesch, G. H. (2010). Macrophages and diabetic nephropathy. Seminars in Nephrology, 30(3), 290–301.

    Article  CAS  PubMed  Google Scholar 

  109. Shanmugam, N., Reddy, M. A., Guha, M., & Natarajan, R. (2003). High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes, 52(5), 1256–1264.

    Article  CAS  PubMed  Google Scholar 

  110. Guha, M., Bai, W., Nadler, J. L., & Natarajan, R. (2000). Molecular mechanisms of tumor necrosis factor alpha gene expression in monocytic cells via hyperglycemia-induced oxidant stress-dependent and -independent pathways. The Journal of Biological Chemistry, 275(23), 17728–17739.

    Article  CAS  PubMed  Google Scholar 

  111. Xu, G., Qin, Q., Yang, M., Qiao, Z., Gu, Y., & Niu, J. (2017). Heparanase-driven inflammation from the AGEs-stimulated macrophages changes the functions of glomerular endothelial cells. Diabetes Research and Clinical Practice, 124, 30–40.

    Article  CAS  PubMed  Google Scholar 

  112. Vlassara, H., Brownlee, M., Manogue, K. R., Dinarello, C. A., & Pasagian, A. (1988). Cachectin/TNF and IL-1 induced by glucose-modified proteins: Role in normal tissue remodeling. Science, 240(4858), 1546–1548.

    Article  CAS  PubMed  Google Scholar 

  113. Chow, F. Y., Nikolic-Paterson, D. J., Atkins, R. C., & Tesch, G. H. (2004). Macrophages in streptozotocin-induced diabetic nephropathy: Potential role in renal fibrosis. Nephrology, Dialysis, Transplantation, 19(12), 2987–2996.

    Article  CAS  PubMed  Google Scholar 

  114. Poteser, M., & Wakabayashi, I. (2004). Serum albumin induces iNOS expression and NO production in RAW 267.4 macrophages. British Journal of Pharmacology, 143(1), 143–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Szymczak, M., Kuzniar, J., & Klinger, M. (2010). The role of heparanase in diseases of the glomeruli. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 58(1), 45–56.

    Article  CAS  Google Scholar 

  116. Katz, A., Van-Dijk, D. J., Aingorn, H., Erman, A., Davies, M., Darmon, D., et al. (2002). Involvement of human heparanase in the pathogenesis of diabetic nephropathy. The Israel Medical Association Journal, 4(11), 996–1002.

    CAS  PubMed  Google Scholar 

  117. van den Hoven, M. J., Rops, A. L., Bakker, M. A., Aten, J., Rutjes, N., Roestenberg, P., et al. (2006). Increased expression of heparanase in overt diabetic nephropathy. Kidney International, 70(12), 2100–2108.

    Article  PubMed  CAS  Google Scholar 

  118. Maxhimer, J. B., Somenek, M., Rao, G., Pesce, C. E., Baldwin, D., Jr., Gattuso, P., et al. (2005). Heparanase-1 gene expression and regulation by high glucose in renal epithelial cells: A potential role in the pathogenesis of proteinuria in diabetic patients. Diabetes, 54(7), 2172–2178.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Israel Science Foundation (grant No. 1715/17), the Legacy Heritage Bio-Medical Program of the Israel Science Foundation (grant No. 663/16), and by the Mizutani Foundation for Glycoscience Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Elkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elkin, M. (2020). Role of Heparanase in Macrophage Activation. In: Vlodavsky, I., Sanderson, R., Ilan, N. (eds) Heparanase. Advances in Experimental Medicine and Biology, vol 1221. Springer, Cham. https://doi.org/10.1007/978-3-030-34521-1_17

Download citation

Publish with us

Policies and ethics