Skip to main content

Clinical and Statistical Considerations when Assessing Oxygen Levels in Tumors: Illustrative Results from Clinical EPR Oximetry Studies

  • Chapter
  • First Online:
Oxygen Transport to Tissue XLI

Abstract

The success of treatment for malignancies, especially those undergoing radiation therapy or chemotherapy, has long been recognized to depend on the degree of hypoxia in the tumor. In addition to the prognostic value of knowing the tumor’s initial level of hypoxia, assessing the tumor oxygenation during standard therapy or oxygen-related treatments (such as breathing oxygen-enriched gas mixtures or taking drugs that can increase oxygen supply to tissues) can provide valuable data to improve the efficacy of treatments. A series of early clinical studies of tumors in humans are ongoing at Dartmouth and Emory using electron paramagnetic resonance (EPR) oximetry to assess tumor oxygenation, initially and over time during either natural disease progression or treatment. This approach has the potential for reaching the long-sought goal of enhancing the effectiveness of cancer therapy. In order to effectively reach this goal, we consider the validity of the practical and statistical assumptions when interpreting the measurements made in vivo for patients undergoing treatment for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Höckel M, Schlenger K, Aral B et al (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515

    PubMed  Google Scholar 

  2. Gray L, Conger A, Ebert M et al (1953) The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26:638–648

    Article  CAS  PubMed  Google Scholar 

  3. Hall E, Giaccia A (2006) Radiobiology for the radiologist, 6th edn. Lippincott William and Wilkins, Philadelphia

    Google Scholar 

  4. Overgaard J (2007) Hypoxic radiosensitization: adored and ignored. J Clin Oncol 25(26):4066–4074. https://doi.org/10.1200/JCO.2007.12.7878

    Article  PubMed  Google Scholar 

  5. Vordermark D, Horsman MR (2016) Hypoxia as a biomarker and for personalized radiation oncology. Rec Res Cancer Res 198:123–142. https://doi.org/10.1007/978-3-662-49651-0_6

    Article  CAS  Google Scholar 

  6. Horsman MR, Mortensen LS, Petersen JB et al (2012) Imaging hypoxia to improve radiotherapy outcome. Nat Rev Clin Oncol 9(12):674–687. https://doi.org/10.1038/nrclinonc.2012.171

    Article  CAS  PubMed  Google Scholar 

  7. Tatum JL, Kelloff GJ, Gillies RJ et al (2006) Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol 82(10):699–757. https://doi.org/10.1080/09553000601002324

    Article  CAS  PubMed  Google Scholar 

  8. Turaka A, Buyyounouski MK, Hanlon AL et al (2012) Hypoxic prostate/muscle pO2 ratio predicts for outcome in patients with localized prostate cancer: long-term results. Int J Radiat Oncol Biol Phys 82(3):e433–e439. https://doi.org/10.1016/j.ijrobp.2011.05.037

    Article  PubMed  Google Scholar 

  9. Nordsmark M, Bentzen SM, Rudat V et al (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 77(1):18–24. https://doi.org/10.1016/j.radonc.2005.06.038

    Article  PubMed  Google Scholar 

  10. Nordsmark M, Loncaster J, Aquino-Parsons C et al (2006) The prognostic value of pimonidazole and tumour pO2 in human cervix carcinomas after radiation therapy: a prospective international multi-center study. Radiother Oncol 80(2):123–131. https://doi.org/10.1016/j.radonc.2006.07.010

    Article  CAS  PubMed  Google Scholar 

  11. Janssens GO, Rademakers SE, Terhaard CH et al (2012) Accelerated radiotherapy with carbogen and nicotinamide for laryngeal cancer: results of a phase III randomized trial. J Clin Oncol 30(15):1777–1783

    Article  CAS  PubMed  Google Scholar 

  12. Vaupel P, Mayer A (2017) In: Schwab M (ed) Oxygenation of tumors Encyclopedia of Cancer, 4th edn. Springer, pp 3342–3346

    Google Scholar 

  13. Carreau A, El Hafny-Rahbi B, Matejuk A et al (2011) Why is the partial pressure of tissues a crucial parameter? J Cell Mol Med 15(6):1239–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vaupel P, Höckel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 9:1221–1235

    Article  CAS  PubMed  Google Scholar 

  15. Epel B, Bowman MK, Mailer C et al (2014) Absolute oxygen R1e imaging in vivo with pulse electron paramagnetic resonance. Magn Reson Red 72(2):362–368. https://doi.org/10.1002/mrm.24926160

    Article  Google Scholar 

  16. Krishna MC, English S, Yamada K et al (2002) Overhauser enhanced magnetic resonance imaging for tumor oximetry: Coregistration of tumor anatomy and tissue oxygen concentration. Proc Natl Acad Sci U S A 99(4):2216–2221. https://doi.org/10.1073/pnas.042671399162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Magat J, Jordan BF, Cron GO et al (2010) Noninvasive mapping of spontaneous fluctuations in tumor oxygenation using 19F MRI. Med Phys 37(10):5434–5441. https://doi.org/10.1118/1.3484056

    Article  CAS  PubMed  Google Scholar 

  18. Bayer C, Shi K, Astner ST et al (2011) Acute versus chronic hypoxia: why a simplified classification is simply not enough. Int J. Radiat Oncol Biol Phys 80:965–968

    Article  Google Scholar 

  19. Vaupel P, Mayer A (2014) Hypoxia in tumors: pathogenesis- related classification, characterization and hypoxia subtypes, and associated biological and clinical implications. Adv Exp Med Biol 812:19–24

    Article  CAS  PubMed  Google Scholar 

  20. Vaupel P and Multhoff G (2019) Fatal alliance of hypoxia-/HIF-1α-driven microenvironmental traits promoting cancer progression. Adv Exp Med Bio (in press)

    Google Scholar 

  21. Yoshida EJ, Chen H, Torres MA et al (2011) Spectrophotometer and ultrasound evaluation of late toxicity following breast-cancer radiotherapy. Med Phys 38(10):5747–5755. 3203129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoshida EJ, Chen H, Torres MA et al (2012) Reliability of quantitative ultrasonic assessment of normal-tissue toxicity in breast cancer radiotherapy. Int J Radiat Oncol Biol Phys 82(2):724–731. 3156354

    Article  PubMed  Google Scholar 

  23. Fukuda Y, Li Y, Segal RA (2017) A mechanistic understanding of axon degeneration in chemotherapy-induced peripheral neuropathy. Front Neurosci 11:481. https://doi.org/10.3389/fnins.2017.00481

    Article  PubMed  PubMed Central  Google Scholar 

  24. Park SB, Kwok JB, Asher R et al (2017) Clinical and genetic predictors of paclitaxel neurotoxicity based on patient- versus clinician-reported incidence and severity of neurotoxicity in the ICON7 trial. Ann Oncol 28(11):2733–2740. https://doi.org/10.1093/annonc/mdx491

    Article  CAS  PubMed  Google Scholar 

  25. Swartz HM, Vaupel P, Williams BB et al (2019) ‘Oxygen level in a tissue’ – What do available measurements really report? Adv Exp Med Bio (in press)

    Google Scholar 

  26. Swartz HM, Clarkson RB (1998) The measurement of oxygen in vivo using EPR techniques. Phys Med Biol 43(7):1957–1975

    Article  CAS  PubMed  Google Scholar 

  27. Swartz HM, Williams BB, Zaki BI et al (2014) Clinical EPR: unique opportunities and some challenges. Acad Rad 21(2):197–206

    Article  Google Scholar 

  28. Swartz HM, Williams BB, Hou H et al (2016) Direct and repeated clinical measurements of pO2 for enhancing cancer therapy and other applications. Adv Exp Med Biol 923:95–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gallez B, Baudelet C, Jordan BF (2004) Assessment of tumor oxygenation by electron paramagnetic resonance: principles and applications. NMR in Biomed 17:240–262

    Article  CAS  Google Scholar 

  30. Charlier N, Beghein N, Gallez B (2004) Development and evaluation of biocompatible inks for the local measurement of oxygen using in vivo EPR. NMR in Biomed 17(5):303–310

    Article  CAS  Google Scholar 

  31. Desmet CM, Binh L, An T et al (2018) Characterization of a clinically used charcoal suspension for in vivo EPR oximetry. MAGMA pub online at 32:205–212. https://doi.org/10.1007/s10334-018-0704-x

    Article  CAS  Google Scholar 

  32. Flood AB, Wood VA, Swartz HM (2017) Using India ink as a sensor for oximetry: evidence of its safety as a medical device. Adv Exp Med and Biol 977:297–312. https://doi.org/10.1007/978-3-319-55231-6_40

    Article  CAS  Google Scholar 

  33. Pandian RP, Parinandi NL, Ilangovan G et al (2003) Novel particulate spin probe for targeted determination of oxygen in cells and tissues. Free Radic Biol Med 35:1138–1148

    Article  CAS  PubMed  Google Scholar 

  34. Hou H, Khan N, Gohain S et al (2018) Pre-clinical evaluation of OxyChip for long-term EPR oximetry. Biomed microdev. 1 20(2):29

    Article  Google Scholar 

  35. Jarvis LA, Williams BB, Schaner PE et al (2016) Phase 1 clinical trial of OxyChip, an implantable absolute pO2 sensor for tumor oximetry. Int J Radiat Onc Biol Phys 96(2):S109–S110

    Article  Google Scholar 

  36. Caston RM, Schreiber W, Hou H et al (2017) Development of the implantable resonator system for clinical EPR oximetry. Cell Biochem-Biophy 75(3–4):275–283

    Article  CAS  Google Scholar 

  37. Flood AB, Wood VA, Schreiber W et al (2017) Guidance for academics to transfer ‘bench-ready’ medical technology into usual clinical practice. Case study: sensors and spectrometer used in EPR oximetry. Adv Exp med bio 1072:233–239. see suppl at 314496_1_En_37_MOESM1_ESM.docx

    Article  Google Scholar 

  38. Demidenko E (2019) Advanced statistics with applications in R. Hoboken: Wiley (in press)

    Google Scholar 

  39. Churchill-Davidson I (1964) Oxygenation in radiotherapy of malignant disease of the upper air passages. The oxygen effect of radiotherapy. Proc R Soc med 57:635–638. 4

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Brown JM (2007) Tumor hypoxia in cancer therapy. Methods Enzymol 435:297–321. https://doi.org/10.1016/S0076-6879(07)35015-5

    Article  CAS  PubMed  Google Scholar 

  41. Braun RD, Lanzen JL, Snyder SA et al (2001) Comparison of tumor and normal tissue oxygen tension measurements using OxyLite or microelectrodes in rodents. Am J Physiol Heart Circ Physiol 280: H2533–H2544, 2001

    Google Scholar 

  42. Vaupel P, Höckel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 9(8):1221–1235. https://doi.org/10.1089/ars.2007.1628

    Article  CAS  PubMed  Google Scholar 

  43. Michaelson JS, Satija S, Kopans D et al (2003) Gauging the impact of breast carcinoma screening in terms of tumor size and death rate. Cancer 98(10):2114–2124

    Article  PubMed  Google Scholar 

  44. Yang Y, Lei X (2006) Towards biologically conformal radiation therapy (BCRT): selective IMRT dose escalation under the guidance of spatial biology distribution. Med Phys 32(6):1473–1484

    Google Scholar 

Download references

Acknowledgments

Major funding is from the National Cancer Institute, PPG Grant P01CA190193 and Dept Neurol, Alexander Reeves Endowment Pilot Project 1 (CIPN). We gratefully acknowledge BW Pogue (Co- Principal investigator of the PPG), P Kuppusamy (PI of PPG’s Project 2: Oximetry using the OxyChip), E Demidenko (Director of PPG’s Biostatistics Core) and the study clinical coordinators (VA Wood and KA Hebert at Dartmouth and JJ Jeong and S Henry at Emory), as well as the engineers and clinicians who contributed to these studies at all participating institutions. All data reported here were gathered under IRB protocols at the respective institutions and all volunteers signed written informed consent. Disclaimer: ABF and HMS are owners of Clin-EPR, LLC which manufacturers clinical EPR instruments for investigational use only.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Flood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Flood, A.B. et al. (2020). Clinical and Statistical Considerations when Assessing Oxygen Levels in Tumors: Illustrative Results from Clinical EPR Oximetry Studies. In: Ryu, PD., LaManna, J., Harrison, D., Lee, SS. (eds) Oxygen Transport to Tissue XLI. Advances in Experimental Medicine and Biology, vol 1232. Springer, Cham. https://doi.org/10.1007/978-3-030-34461-0_20

Download citation

Publish with us

Policies and ethics