Skip to main content

Stabilization of Expansive Soil Reinforced with Polypropylene and Glass Fiber in Cement and Alkali Activated Binder

  • Conference paper
  • First Online:
Advancements in Unsaturated Soil Mechanics (GeoMEast 2019)

Part of the book series: Sustainable Civil Infrastructures ((SUCI))

Abstract

Expansive black cotton soil (BCS) exhibits dual nature (swelling/shrinkage) predominantly when it is exposed to moisture fluctuation. This behavior renders the BCS unsuitable for use in geoengineering applications. The present study emphasizes the polypropylene and glass fiber based soil reinforcement with a traditional cement binder and envirosafe alkali-activated binders (AAB). Cement stabilization is one of the most popular methods for reducing swelling properties of BCS. However, the production of cement leads to the emission of greenhouse gases, which is a threat to modern society. Hence the present study aims to compare the geomechanical strength between AAB and cement binder with inclusions of various discrete fibers. AAB is generated by the reaction between an aluminosilicate precursor (Fly ash and/or GGBS) and an alkali activator solution of sodium hydroxide and sodium silicate. The water to solids ratio is maintained at 0.4 in the present study. Mineralogical and microstructural characterization are performed for both cement and AAB treated BCS as well as untreated BCS through stereomicroscope, X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), and energy dispersive x-ray spectroscopy (EDS). The unconfined compressive strength (UCS), indirect tensile strength (ITS), California Bearing Ratio (CBR) and consolidation characteristics of both untreated and binder treated BCS are carried out at different combinations of cement-fiber and AAB-fiber in the clay. It is observed that the proposed treatment method shows a significant improvement in geoengineering properties and aids in enhancing the shear strength and ductility properties. An addition of 5% AAB with 0.3% of polypropylene fiber reduces the plasticity and swelling pressure by 17–25%, while CBR and ITS values are increased by 28–33%. Recommendations on the practical implementation of this technique for stabilization of expansive soils are proposed based on findings of the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackroyd, L.W., Husain, R.: Residual and lacustrine black cotton soils of north-east Nigeria. Geotechnique 36(1), 113–118 (1986)

    Article  Google Scholar 

  • Al-Rawas, A.A., Hago, A.W., Al-Sarmi, H.: Effect of lime, cement and Sarooj (artificial pozzolan) on the swelling potential of an expansive soil from Oman. J. Build. Environ. 40, 681–687 (2005)

    Article  Google Scholar 

  • Anagnostopoulos, C.A., Tzetzis, D., Berketis, K.: Shear strength behaviour of polypropylene fibre reinforced cohesive soils. Geomech. Geoeng. 9(3), 241–251 (2014)

    Article  Google Scholar 

  • Bell, F.G.: Lime stabilization of clay minerals and soils. Eng. Geol. 42(4), 223–237 (1996)

    Article  Google Scholar 

  • Chen, F.H.: Foundations on Expansive Soils. Elsevier Scientific Publishing Co., Amsterdam (1988)

    Google Scholar 

  • Chen, H., Wang, Q.: The behaviour of organic matter in the process of soft soil stabilization using cement. Bull. Eng. Geol. Environ. 65(4), 445–448 (2006)

    Article  Google Scholar 

  • Das, B.M.: Chemical and mechanical stabilization. Transportation Research Board (2003)

    Google Scholar 

  • Davidovits, J.: Properties of geopolymer cements. In: First International Conference on Alkaline Cements and Concretes, Kiev State Technical University, Scientific Research Institute on Binders and Materials, Ukraine, vol. 1, p. 13 (1994)

    Google Scholar 

  • Eberemu, A.O., Sada, H.: Compressibility characteristics of compacted black cotton soil treated with rice husk ash. Niger. J. Technol. 32(3), 507–521 (2013)

    Google Scholar 

  • Gartner, E.: Industrially interesting approaches to ‘low-CO2’ cements. Cem. Concr. Res. 34(9), 1489–1498 (2004)

    Article  Google Scholar 

  • Gupta, S., GuhaRay, A., Kar, A., Komaravolu, V. P.: Performance of alkali-activated binder-treated jute geotextile as reinforcement for subgrade stabilization. Int. J. Geotech. Eng. 1–15 (2018)

    Google Scholar 

  • Kaniraj, S.R., Gayathri, V.: Geotechnical behavior of fly ash mixed with randomly oriented fiber inclusions. Geotext. Geomembr. 21, 123–149 (2003)

    Article  Google Scholar 

  • Katti, R.K.: Search for solutions to problems in black cotton soils. Indian Institute of Technology, Bombay (1978)

    Google Scholar 

  • Kumar, A., Walia, B.S., Bajaj, A.: Influence of fly ash, lime, and polyester fibers on compaction and strength properties of expansive soil. J. Mater. Civ. Eng. 19(3), 242–248 (2007)

    Article  Google Scholar 

  • Lin, B., Cerato, A.B., Madden, A.S., Elwood Madden, M.E.: Effect of fly ash on the behavior of expansive soils: microscopic analysis. Environ. Eng. Geosci. 19(1), 85–94 (2013)

    Article  Google Scholar 

  • Madejova, J., Komadel, P.: Baseline studies of the clay minerals society source clays: infrared methods. Clays Clay Miner. 49(5), 410–432 (2001)

    Article  Google Scholar 

  • Malik, V., Priyadarshee, A.: Compaction and swelling behavior of black cotton soil mixed with different non-cementitious materials. Int. J. Geotech. Eng. 12(4), 413–419 (2018)

    Article  Google Scholar 

  • Mazhar, S., GuhaRay, A., Kar, A., Avinash, G.S.S., Sirupa, R.: Stabilization of expansive black cotton soils with alkali activated binders. In: Proceedings of China-Europe Conference on Geotechnical Engineering, pp. 826–829. Springer, Cham (2018)

    Google Scholar 

  • Moghal, A.A.B., Chittoori, B., Basha, B.M., Al-Shamrani, M.A.: Target reliability approach to study the effect of fiber reinforcement on UCS behavior of lime treated semiarid soil. J. Mater. Civ. Eng. 29, 04017014 (2017). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001835

    Article  Google Scholar 

  • Miao, S., Shen, Z., Wang, X., Luo, F., Huang, X., Wei, C.: Stabilization of highly expansive black cotton soils by means of geopolymerisation. J. Mater. Civ. Eng. 29(10), 04017170 (2017)

    Article  Google Scholar 

  • Ural, N.: Effects of additives on the microstructure of clay. J. Road Mater. Pavement Des. 10, 1–16 (2015)

    Google Scholar 

  • Ola, S.A.: Geotechnical properties and behavior of some stabilized Nigerian lateritic soils. Q. J. Eng. Geol. Hydrogeol. 11(2), 145–160 (1978)

    Article  Google Scholar 

  • Oren, A.H.: Estimating compaction parameters of clayey soils from sediment volume test. Appl. Clay Sci. 101, 68–72 (2014)

    Article  Google Scholar 

  • Ouhadi, V.R., Yong, N.R.: Ettringite formation and behaviour in clayey soils. Appl. Clay Sci. 42, 258–265 (2008)

    Article  Google Scholar 

  • Phani Kumar, B.R., Sharma, R.S.: Effect of fly ash on engineering properties of expansive soils. J. Geotech. Geoenviron. Eng. 130(7), 764–767 (2004)

    Article  Google Scholar 

  • Petry, T.M., Little, D.N.: Review of stabilization of clays and expansive soils in pavements and lightly loaded structures—history, practice, and future. J. Mater. Civ. Eng. 14(6), 447–460 (2002)

    Article  Google Scholar 

  • Rios, S., Cristelo, N., Viana da Fonseca, A., Ferreira, C.: Structural performance of alkali-activated soil ash versus soil cement. J. Mater. Civ. Eng. 28(2), 04015125 (2015)

    Article  Google Scholar 

  • Saride, S., Dutta, T.T.: Effect of fly-ash stabilization on stiffness modulus degradation of expansive clays. J. Mater. Civ. Eng. 28(12), 04016166 (2016)

    Article  Google Scholar 

  • Salahudeen, A.B., Eberemu, A.O., Osinubi, K.J.: Assessment of cement kiln dust-treated expansive soil for the construction of flexible pavements. Geotech. Geol. Eng. 32(4), 923–931 (2014)

    Article  Google Scholar 

  • Sharma, N.K., Swain, S.K., Sahoo, U.C.: Stabilization of a clayey soil with fly ash and lime: a micro level investigation. Geotech. Geol. Eng. 30(5), 1197–1205 (2012)

    Article  Google Scholar 

  • Sekhar, D., Nayak, S.: SEM and XRD investigations on lithomargic clay stabilized using granulated blast furnace slag and cement. Int. J. Geotech. Eng. 13, 1–15 (2017)

    Google Scholar 

  • Sivapullaiah, P.V., Prasad, B.G., Allam, M.M.: Effect of sulfuric acid on swelling behavior of an expansive soil. Soil Sediment Contam. 18(2), 121–135 (2009)

    Article  Google Scholar 

  • Tang, C., Shi, B., Gao, W., Chen, F., Cai, Y.: Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotext. Geomembr. 25(3), 194–202 (2007)

    Article  Google Scholar 

  • Vitale, E., Russo, G., Dell’Agli, G., Ferone, C., Bartolomeo, C.: Mechanical behaviour of soil improved by alkali activated binders. Environments 4(4), 80 (2017)

    Article  Google Scholar 

  • Yetimoglu, T., Inanir, M., Inanir, O.E.: A study on bearing capacity of randomly distributed fiber-reinforced sand fills overlying soft clay. Geotext. Geomembr. 23(2), 174–183 (2005)

    Article  Google Scholar 

  • Zhao, H., Ge, L., Petry, T., Sun, Y.-Z.: Effects of chemical stabilizers on an expansive clay. J. Civ. Eng. KSCE 10, 1–9 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the Central Analytical Laboratory Facilities at BITS-Pilani, Hyderabad Campus for providing the setup for the XRD, FTIR, and SEM-EDS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anasua Guharay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Syed, M., Guharay, A. (2020). Stabilization of Expansive Soil Reinforced with Polypropylene and Glass Fiber in Cement and Alkali Activated Binder. In: Hoyos, L., Shehata, H. (eds) Advancements in Unsaturated Soil Mechanics. GeoMEast 2019. Sustainable Civil Infrastructures. Springer, Cham. https://doi.org/10.1007/978-3-030-34206-7_4

Download citation

Publish with us

Policies and ethics