Skip to main content

An Introduction to Advanced Machine Learning: Meta-Learning Algorithms, Applications, and Promises

  • Chapter
  • First Online:
Optimization, Learning, and Control for Interdependent Complex Networks

Abstract

In Chaps. 3 and 4, we have explored the theoretical aspects of feature extraction optimization processes for solving large-scale problems and overcoming machine learning limitations. Majority of optimization algorithms that have been introduced in Mohammadi et al. (Evolutionary computation, optimization and learning algorithms for data science, 2019. arXiv preprint arXiv: 1908.08006; Applications of nature-i nspired algorithms for dimension reduction: enabling efficient data analytics, 2019. arXiv preprint arXiv: 1908.08563) guarantee the optimal performance of supervised learning, given offline and discrete data, to deal with curse of dimensionality (CoD) problem. These algorithms, however, are not tailored for solving emerging learning problems. One of the important issues caused by online data is lack of sufficient samples per class. Further, traditional machine learning algorithms cannot achieve accurate training based on limited distributed data, as data has proliferated and dispersed significantly. Machine learning employs a strict model or embedded engine to train and predict which still fails to learn unseen classes and sufficiently use online data. In this chapter, we introduce these challenges elaborately. We further investigate meta-learning (MTL) algorithm, and their application and promises to solve the emerging problems by answering how autonomous agents can learn to learn?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Schmidhuber, Evolutionary principles in self-referential learning, Diploma thesis, 1987

    Google Scholar 

  2. F.G. Mohammadi, M.H. Amini, H.R. Arabnia, Evolutionary computation, optimization and learning algorithms for data science (2019). arXiv preprint arXiv: 1908.08006

    Google Scholar 

  3. F.G. Mohammadi, M.H. Amini, H.R. Arabnia, Applications of nature-inspired algorithms for dimension reduction: enabling efficient data analytics (2019). arXiv preprint arXiv: 1908.08563

    Google Scholar 

  4. M.H. Amini, Distributed computational methods for control and optimization of power distribution networks, PhD Dissertation, Carnegie Mellon University, 2019

    Google Scholar 

  5. M.H. Amini, J. Mohammadi, S. Kar, Distributed holistic framework for smart city infrastructures: tale of interdependent electrified transportation network and power grid. IEEE Access 7, 157535–157554 (2019)

    Article  Google Scholar 

  6. M.H. Amini, J. Mohammadi, S. Kar, Distributed intelligent algorithm for interdependent electrified transportation and power networks, Proceedings of the 9th ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications (ACM, New York, 2019)

    Google Scholar 

  7. A. Imteaj, M.H. Amini, J. Mohammadi, Leveraging decentralized artificial intelligence to enhance resilience of energy networks. arXiv preprint arXiv:1911.07690 (2019)

    Google Scholar 

  8. M.H. Amini, B. Nabi, M.R. Haghifam, Load management using multi-agent systems in smart distribution network, in 2013 IEEE Power and Energy Society General Meeting (IEEE, New York, 2013)

    Google Scholar 

  9. M.H. Amini, S. Bahrami, F. Kamyab, S. Mishra, R. Jaddivada, K. Boroojeni, P. Weng, Y. Xu, Decomposition methods for distributed optimal power flow: panorama and case studies of the DC model, in Classical and recent aspects of power system optimization (Academic Press, Cambridge, 2018), pp. 137–155

    Google Scholar 

  10. A. Imteaj, M.H. Amini, Distributed sensing using smart end-user devices: pathway to federated learning for autonomous IoT, in 2019 International Conference on Computational Science and Computational Intelligence (Las Vegas, 2019)

    Google Scholar 

  11. S. Ravi, H. Larochelle, Optimization as a model for few-shot learning, in International Conference on Learning Representations (ICLR) (2017), pp. 281–288

    Google Scholar 

  12. R. Vilalta, Y. Drissi, A perspective view and survey of meta-learning. Artif. Intell. Rev. 18(2), 77–95 (2002)

    Article  Google Scholar 

  13. J. Hannan, Approximation to Bayes risk in repeated play. Contrib. Theory Games 3, 97–139 (1957)

    MathSciNet  MATH  Google Scholar 

  14. N. Cesa-Bianchi, G. Lugosi, Prediction, Learning, and Games (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  15. S.M. Weiss, N. Indurkhya, Rule-based machine learning methods for functional prediction. J. Artif. Intell. Res. 3, 383–403 (1995)

    Article  Google Scholar 

  16. J.M. Banda, M. Seneviratne, T. Hernandez-Boussard, N.H. Shah, Advances in electronic phenotyping: from rule-based definitions to machine learning models. Annu. Rev. Biomed. Data Sci. 1, 53–68 (2018)

    Article  Google Scholar 

  17. M. Chen, U. Challita, W. Saad, C. Yin, M. Debbah, Artificial neural networks-based machine learning for wireless networks: a tutorial. IEEE Commun. Surv. Tutorials (2019). https://ieeexplore.ieee.org/abstract/document/8755300/

    Book  Google Scholar 

  18. A. Iranmehr, H. Masnadi-Shirazi, N. Vasconcelos, Cost-sensitive support vector machines. Neurocomputing 343, 50–64 (2019)

    Article  Google Scholar 

  19. R. Agrawal, Integrated parallel k-nearest neighbor algorithm, in Smart Intelligent Computing and Applications (Springer, Berlin, 2019), pp. 479–486

    Book  Google Scholar 

  20. D. Poland, S. Rychkov, A. Vichi, The conformal bootstrap: theory, numerical techniques, and applications. Rev. Mod. Phys. 91(1), 015002 (2019)

    Google Scholar 

  21. Y. Bengio, S. Bengio, J. Cloutier, Learning a Synaptic Learning Rule (Université de Montréal, Département d’informatique et de recherche …, Montréal, 1990)

    Google Scholar 

  22. S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  23. A. Nagabandi, C. Finn, S. Levine, Deep online learning via meta-learning: continual adaptation for model-based RL (2018). arXiv preprint arXiv:1812.07671

    Google Scholar 

  24. A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, T. Lillicrap, Meta-learning with memory-augmented neural networks, in International Conference on Machine Learning (2016), pp. 1842–1850

    Google Scholar 

  25. G. Koch, R. Zemel, R. Salakhutdinov, Siamese neural networks for one-shot image recognition, in ICML Deep Learning Workshop, vol. 2 (2015)

    Google Scholar 

  26. O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., Matching networks for one shot learning, in Advances in Neural Information Processing Systems (2016), pp. 3630–3638

    Google Scholar 

  27. C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast adaptation of deep networks, in Proceedings of the 34th International Conference on Machine Learning-Volume 70, JMLR. org (2017), pp. 1126–1135

    Google Scholar 

  28. A. Antoniou, H. Edwards, A. Storkey, How to train your MAML (2018). arXiv preprint arXiv:1810.09502

    Google Scholar 

  29. C. Finn, K. Xu, S. Levine, Probabilistic model-agnostic meta-learning, in Advances in Neural Information Processing Systems (2018), pp. 9516–9527

    Google Scholar 

  30. J. Snell, K. Swersky, R. Zemel, Prototypical networks for few-shot learning, in Advances in Neural Information Processing Systems (2017), pp. 4077–4087

    Google Scholar 

  31. Y. Zou, J. Feng, Hierarchical meta learning (2019). arXiv preprint arXiv:1904.09081

    Google Scholar 

  32. F. Sung, Y. Yang, L. Zhang, T. Xiang, P.H.S. Torr, T.M. Hospedales, Learning to compare: relation network for few-shot learning, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 1199–1208

    Google Scholar 

  33. J. Kim, T. Kim, S. Kim, C.D. Yoo, Edge-labeling graph neural network for few-shot learning, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019), pp. 11–20

    Google Scholar 

  34. Y.-X. Wang, R. Girshick, M. Hebert, B. Hariharan, Low-shot learning from imaginary data, in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2018)

    Google Scholar 

  35. C. Finn, T. Yu, T. Zhang, P. Abbeel, S. Levine, One-shot visual imitation learning via meta-learning, in 1st Conference on Robot Learning (CoRL) (2017)

    Google Scholar 

  36. S. Reed, Z. Akata, H. Lee, B. Schiele, Learning deep representations of fine-grained visual descriptions, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 49–58

    Google Scholar 

  37. A.L.G. Dinu, M. Baroni, Improving zero-shot learning by mitigating the hubness problem, in Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), workshop track (2015)

    Google Scholar 

  38. E. Kodirov, T. Xiang, S. Gong, Semantic autoencoder for zero-shot learning, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017), pp. 3174–3183

    Google Scholar 

  39. F.G. Mohammadi, M.H. Amini, Promises of meta-learning for device-free human sensing: learn to sense, in Proceedings of the 1st ACM International Workshop on Device-Free Human Sensing (DFHS’19) (ACM, New York, 2019), pp. 44–47. https://doi.org/10.1145/3360773.3360884

    Book  Google Scholar 

  40. J. Choi, J. Lee, J. Park, J. Nam, Zero-shot learning and knowledge transfer in music classification and tagging (2019). arXiv preprint arXiv:1906.08615

    Google Scholar 

  41. D. Pathak, P. Mahmoudieh, G. Luo, P. Agrawal, D. Chen, Y. Shentu, E. Shelhamer, J. Malik, A.A. Efros, T. Darrell, Zero-shot visual imitation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2018), pp. 2050–2053

    Google Scholar 

  42. D. Pathak, P. Mahmoudieh, G. Luo, P. Agrawal, D. Chen, Y. Shentu, E. Shelhamer, J. Malik, A.A. Efros, T. Darrell, Zero-shot visual imitation, in International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  43. B.M. Lake, R. Salakhutdinov, J.B. Tenenbaum, Human-level concept learning through probabilistic program induction. Science 350(6266), 1332–1338 (2015)

    Article  MathSciNet  Google Scholar 

  44. C. Finn, A. Rajeswaran, S. Kakade, S. Levine, Online meta-learning (2019). arXiv preprint arXiv:1902.08438

    Google Scholar 

  45. Q. Sun, Y. Liu, T.-S. Chua, B. Schiele, Meta-transfer learning for few-shot learning, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 403–412 (2019)

    Google Scholar 

  46. Q. Wang, Y. Ming, Z. Jin, Q. Shen, D. Liu, M.J. Smith, K. Veeramachaneni, H. Qu, Atmseer: increasing transparency and controllability in automated machine learning, in Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (ACM, New York, 2019), p. 681

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hadi Amini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammadi, F.G., Amini, M.H., Arabnia, H.R. (2020). An Introduction to Advanced Machine Learning: Meta-Learning Algorithms, Applications, and Promises. In: Amini, M. (eds) Optimization, Learning, and Control for Interdependent Complex Networks. Advances in Intelligent Systems and Computing, vol 1123. Springer, Cham. https://doi.org/10.1007/978-3-030-34094-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34094-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34093-3

  • Online ISBN: 978-3-030-34094-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics