Skip to main content

Optical Properties of Magnetic Nanoalloys and Nanocomposites

  • Living reference work entry
  • First Online:
Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites

Abstract

The optical characteristics of multi-component magnetic nanoalloys remain an area of immense interest with ever-growing experimental and theoretical advancements. These are widely studied owing to the possibility of fine tuning the properties based on varying particle composition and their internal architecture. Magnetic nanoalloys that have a large surface area provide an excellent interaction with external magnetic fields suitable for industrial application, including biomedical applications. A magneto-optical property, known as the Faraday effect, has received wide attention as magneto-optical materials are applied in diverse fields. This chapter focuses on the optical properties of magnetic nanoalloys, metal nanostructures, including hybrid systems. In addition, some of the light-scattering experiments are discussed with the aim of understanding the structural and functional properties of magnetic nanoalloys. We also give an update on recent developments, which will provide a collective framework toward future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andreazza P, Pierron-Bohnes V, Tournus F (2015) Structure and order in cobalt/platinum-type nanoalloys: from thin films to supported clusters. Surf Sci Rep 70(2):188–258

    Article  CAS  Google Scholar 

  • Arora P, Sindhu A, Dilbaghi N, Chaudhury A, Rajakumar G and Rahuman A (2012) J Cell Mol Med 16(9):1991–2000.

    Google Scholar 

  • Barcaro G, Sementa L, Fortunelli A et al (2015) Optical properties of nanoalloys. PCCP 17(42):27952–27967

    Article  CAS  Google Scholar 

  • Behrens S, Appel I (2016) Magnetic nanocomposites. Curr Opin Biotechnol 39:89–96

    Article  CAS  Google Scholar 

  • Bennet M, Gur D, Yoon J et al (2017) A bacteria-based remotely tunable photonic device Adv. Opt Mater 5(1):1600617

    Article  CAS  Google Scholar 

  • Bhana S, Chaffin E, Wang Y et al (2014) Capture and detection of cancer cells in whole blood with magnetic–optical nanoovals. Nanomedicine 9(5):593–606

    Article  CAS  Google Scholar 

  • Bian X, Hong K, Ge X et al (2015) Functional hierarchical nanocomposites based on ZnO nanowire and magnetic nanoparticle as highly active recyclable photocatalysts. J Phys Chem C 119(4):1700–1705

    Article  CAS  Google Scholar 

  • Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Willey, New York

    Google Scholar 

  • Bonilla M, Kolekar S, Ma Y et al (2018) Strong room-temperature ferromagnetism in VSe 2 monolayers on van der Waals substrates. Nat Nanotechnol 13(4):289–293

    Article  CAS  Google Scholar 

  • Brossard S, Volatron F, Lisnard L et al (2012) Investigation of the photoinduced magnetization of Copper octacyanomolybdates nanoparticles by X-ray magnetic circular dichroism. J Am Chem 134(1):222–228

    Article  CAS  Google Scholar 

  • Broyer M, Cottancin E, Lermé J et al (2008) Optical properties and relaxation processes at femtosecond scale of bimetallic clusters. Faraday Discuss 138:137–145

    Article  CAS  Google Scholar 

  • Cai H, Li K, Shen M et al (2012) Facile assembly of Fe 3 O 4@ Au nanocomposite particles for dual mode magnetic resonance and computed tomography imaging applications. J Mater Chem 22(30):15110–15120

    Article  CAS  Google Scholar 

  • Calvo F (ed) (2013) Nanoalloys: from fundamentals to emergent applications. Newnes

    Google Scholar 

  • Chen H, Qi F, Zhou H et al (2015) Fe3O4@Au nanoparticles as a means of signal enhancement in surface plasmon resonance spectroscopy for thrombin detection. Sens Actuators B Chem 212:505–511

    Article  CAS  Google Scholar 

  • Chen S, Zhang Y, Shih TM et al (2018) Plasmon-induced magnetic resonance enhanced Raman spectroscopy. Nano Lett 18(4):2209–2216

    Article  CAS  Google Scholar 

  • Chen T, Zhao Q, Meng X et al (2020) Ultrasensitive magnetic tuning of optical properties of films of cholesteric cellulose nanocrystals. ACS Nano 14(8):9440–9448

    Article  CAS  Google Scholar 

  • Chin JY, Steinle T, Wehlus T, Dregely D, Weiss T, Belotelov VI, Stritzker B, Giessen H (2013) Nat. Commun 4:1599

    Google Scholar 

  • Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387

    Article  CAS  Google Scholar 

  • Dridi H, Moadhen A, Haji L (2015) Comparative SERS study carried out on unsilanized and silanized oxidized porous silicon surface coated by small gold nanoparticles. J Porous Mater 22(1):239–245

    Article  CAS  Google Scholar 

  • Duckworth TA, Ogrin F, Dhesi SS et al (2011) Magnetic imaging by x-ray holography using extended references. Opt Express 19(17):16223–16228

    Article  CAS  Google Scholar 

  • Elliott AB, Horvath R, Gordon KC (2012) Vibrational spectroscopy as a probe of molecule-based devices Chem. Soc Rev 41(5):1929–1946

    Article  CAS  Google Scholar 

  • Fan Z, Shelton M, Singh AK et al (2012) Multifunctional plasmonic shell–magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells. ACS Nano 6(2):1065–1073

    Article  CAS  Google Scholar 

  • Frey NA, Peng S, Cheng K et al (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38(9):2532–2542

    Article  CAS  Google Scholar 

  • Ghasemi AB, Faridi E, Ansari N & Mohseni SM (2016) Extraordinary magneto-optical Kerr effect via MoS 2 monolayer in Au/Py/MoS 2 plasmonic cavity. RSC advances 6(108):106591–106599.

    Google Scholar 

  • Gleich B and Weizenecker J (2005) Tomographic Imaging Using the Nonlinear Response of Magnetic Particles. Nature 435:1214–1217.

    Google Scholar 

  • Gun’ko YK, Gunko AY (2011) Multifunctional nanocomposite particles for biomedical applications. In: Nanocomposite particles for bio-applications. Pan Stanford, pp 208–231

    Google Scholar 

  • Halas NJ (2010) Plasmonics: an emerging field fostered by Nano Letters. Nano Lett 10:3816

    Article  CAS  Google Scholar 

  • Han B, Gao X, Lv J, Tang Z (2018) Magnetic circular dichroism in nanomaterials: new opportunity in understanding and modulation of excitonic and plasmonic resonances. Adv Mater 32:1801491

    Article  CAS  Google Scholar 

  • Hase TP, Pape I, Tanner BK et al (2000) Soft-x-ray resonant magnetic diffuse scattering from strongly coupled Cu/Co multilayers. Phys Rev B Condens Matter 61(6):R3792

    Article  CAS  Google Scholar 

  • He L, Wang M, Ge J et al (2012) Magnetic assembly route to colloidal responsive photonic nanostructures. Acc Chem Res 45(9):1431–1440

    Article  CAS  Google Scholar 

  • Hernandez-A PA, Garcia-F N, Iriqui-R JL, Higuera-V H, León-S E, Esquivel, R, …. & Álvarez-Ramos ME (2020) Systematic Evaluation of the Thermo-magnetic Properties of Nanoparticles Coated with PNIPAM. Microscopy and Microanalysis 26(S2):2278–2280.

    Google Scholar 

  • Hosterman BD, Farley JW, Johnson (2013) Spectroscopic study of the vibrational modes of magnesium nickel chromite, MgxNi1− xCr2O4. J Phys Chem Solids 74(7):985–990

    Article  CAS  Google Scholar 

  • Hou H, Huang X, Wei G et al (2019) Fenton reaction-assisted photodynamic therapy for cancer with multifunctional magnetic nanoparticles. ACS Appl Mater Interfaces 11(33):29579–29592

    Article  CAS  Google Scholar 

  • Huang B, Clark G, Navarro-Moratalla E et al (2017) Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657):270–273

    Article  CAS  Google Scholar 

  • Jiang C, Liu F, Cuadra J, Huang Z, Li K, Rasmita A, Srivastava A, Liu Z, Gao W (2017) Nat. Commun 8:802

    Google Scholar 

  • Jubb AM, Allen HC (2010) Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl Mater Interfaces 2(10):2804–2812

    Article  CAS  Google Scholar 

  • Khandhar AP, Ferguson RM, Krishnan KM (2011) Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: implications in biological systems. J Appl Phys 109(7):07B310

    Article  CAS  Google Scholar 

  • Kodama RH (1999) Magnetic nanoparticles. J Magn 200(1–3):359–372

    Article  CAS  Google Scholar 

  • Kreibig U, Vollmer M (1995) Theoretical considerations. In: Optical properties of metal clusters. Springer, Berlin/Heidelberg, pp 13–201

    Chapter  Google Scholar 

  • Kwizera EA, Chaffin E, Shen X et al (2016) Size-and shape-controlled synthesis and properties of magnetic–plasmonic core–shell nanoparticles. J Phys Chem C 120(19):10530–10546

    Article  CAS  Google Scholar 

  • Lan T, Ding B, Liu B (2020) Magneto-optic effect of two-dimensional materials and related applications. Nano Select 1(3):298–310

    Article  Google Scholar 

  • Larson TA, Bankson J, Aaron J et al (2007) Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells. Nanotechnology 18(32):325101

    Article  CAS  Google Scholar 

  • Lee H, Shin TH, Cheon J (2015a) Recent developments in magnetic diagnostic systems. Chem Rev 115(19):10690–10724

    Article  CAS  Google Scholar 

  • Lee M, Kang YL, Rho WY et al (2015b) Preparation of plasmonic magnetic nanoparticles and their light scattering properties. RSC Adv 5(27):21050–21053

    Article  CAS  Google Scholar 

  • Lesnichaya MV, Sukhov BG, Aleksandrova GP et al (2017) Chiroplasmonic magnetic gold nanocomposites produced by one-step aqueous method using κ-carrageenan. Carbohydr Polym 175:18–26

    Article  CAS  Google Scholar 

  • Levin CS, Hofmann C, Ali TA (2009) Magnetic– plasmonic core– shell nanoparticles. ACS Nano 3(6):1379–1388

    Article  CAS  Google Scholar 

  • Li L, Chen D, Zhang Y et al (2007) Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system. Nanotechnology 18(40):405102

    Article  CAS  Google Scholar 

  • Li J & Zhang JZ (2009) Optical properties and applications of hybrid semiconductor nanomaterials. Coordination Chemistry Reviews 253(23–24):3015–3041

    Google Scholar 

  • Li J, Hu Y, Yang J et al (2015) Hyaluronic acid-modified Fe3O4@ Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials 38:10–21

    Article  CAS  Google Scholar 

  • Lim J, Majetich SA (2013) Composite magnetic–plasmonic nanoparticles for biomedicine: manipulation and imaging. Nano Today 8(1):98–113

    Article  CAS  Google Scholar 

  • Lim J, Yeap SP, Che HX et al (2013) Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res Lett 8(1):381

    Article  CAS  Google Scholar 

  • Lin F, Zhu Z, Zhou X, Qiu W, Niu C, Hu J, Dahal K, Wang Y, Zhao Z, Ren Z (2017) Adv. Mater. 29:1604453

    Google Scholar 

  • Liu XL, Choo ES, Ahmed AS et al (2014) Magnetic nanoparticle-loaded polymer nanospheres as magnetic hyperthermia agents. J Mater Chem B 2(1):120–128

    Article  CAS  Google Scholar 

  • Liu W, Wang Y, Fan J, Pi L, Ge M, Zhang L, Zhang Y (2019) Phys. Rev. B 100:104403.

    Google Scholar 

  • Mariscal MM, Oviedo OA, Leiva EPM (2012) Metal clusters and nanoalloys: from modeling to applications. Springer Science & Business Media

    Google Scholar 

  • McMillan P & Devine RAB (1988) The Physics and Technology of Amorphous SiC2.

    Google Scholar 

  • Michler GH (2008) Electron microscopy of polymers. Springer Science & Business Media

    Google Scholar 

  • Mie G (1908) Contribution to the optics of turbid media specifically colloidal metal particles. Ann Phys (Leipzig) 25:377

    Article  CAS  Google Scholar 

  • Niemirowicz K, Swiecicka I, Wilczewska AZ, et al. (2014) Gold-functionalized magnetic nanoparticles restrict growth of Pseudomonas aeruginosa. Int J Nanomedicine 9:2217–2224.

    Google Scholar 

  • Nykypanchuk D, Maye MM et al (2008) DNA-guided crystallization of colloidal nanoparticles. Nature 451(7178):549–552

    Article  CAS  Google Scholar 

  • O’Hara DJ, Zhu T, Trout AH et al (2018) Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett 18(5):3125–3131

    Article  CAS  Google Scholar 

  • Oberdisse J (2007) Adsorption and grafting on colloidal interfaces studied by scattering techniques. Curr Opin Colloid Interface Sci 12(1):3–8

    Article  CAS  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Kim HJ, Tilton RD, & Lowry GV (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. Journal of Nanoparticle Research 10(5):795–814

    Google Scholar 

  • Pineider F, Campo G, Bonanni V et al (2013) Circular magnetoplasmonic modes in gold nanoparticles. Nano Lett 13(10):4785–4789

    Article  CAS  Google Scholar 

  • Pusey PN (1974) Photon correlation and light beating spectroscopy. Plenum Press, New York

    Google Scholar 

  • Rivas-Murias B, Salgueiriño V (2017) Thermodynamic CoO–Co3O4 crossover using Raman spectroscopy in magnetic octahedron-shaped nanocrystals. J Raman Spectrosc 48(6):837–841

    Article  CAS  Google Scholar 

  • Rousset JL, Cadete Santos Aires FJ, Sekhar BR et al (2000) Comparative X-ray photoemission spectroscopy study of Au, Ni, and AuNi clusters produced by laser vaporization of bulk metals. J Phys Chem B 104(23):5430–5435

    Article  CAS  Google Scholar 

  • Rout CS, Kumar A, Fisher TS (2011) Carbon nanowalls amplify the surface-enhanced Raman scattering from Ag nanoparticles. Nanotechnology 22(39):395704

    Article  CAS  Google Scholar 

  • Rümenapp C, Gleich B, Mannherz HG et al (2015) Detection of molecules and cells using nuclear magnetic resonance with magnetic nanoparticles. J Magn Mater 380:271–275

    Article  CAS  Google Scholar 

  • Schmidtke C, Kloust H, Bastus NG, Merkl J, Tran H, Flessau S, Feld A, Schotten T and Weller H (2013) Nanoscale 5:11783

    Google Scholar 

  • Sensenig R, Sapir Y, MacDonald C, Cohen S and Polyak B (2012) Nanomedicine (Lond) 7(9):1425–1442

    Google Scholar 

  • Shiratsu T, Yao H (2016) Magnetic circular dichroism of thiolate-protected plasmonic gold nanoparticles: separating the effects of interband transitions and surface magnetoplasmon resonance. J Nanophotonics 10(4):046004

    Article  Google Scholar 

  • Shuai M, Klittnick A, Shen Y et al (2016) Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates. Nat Commun 7(1):1–8

    Article  CAS  Google Scholar 

  • Silva AK, Kolosnjaj-Tabi J, Bonneau S et al (2013) Magnetic and photoresponsive theranosomes: translating cell-released vesicles into smart nanovectors for cancer therapy. ACS Nano 7(6):4954–4966

    Article  CAS  Google Scholar 

  • Singamaneni S, Bliznyuk VN, Binek C et al (2011) Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. J Mater Chem 21(42):16819–16845

    Article  CAS  Google Scholar 

  • Slavov L, Abrashev MV, Merodiiska T et al (2010) Raman spectroscopy investigation of magnetite nanoparticles in ferrofluids. J Magn Mater 322(14):1904–1911

    Article  CAS  Google Scholar 

  • Spaeth P, Adhikari S, Le L et al (2019) Circular dichroism measurement of single metal nanoparticles using photothermal imaging. Nano Lett 19(12):8934–8940

    Article  CAS  Google Scholar 

  • Stier AV, Wilson NP, Clark G, Xu X & Crooker SA (2016) Probing the influence of dielectric environment on excitons in monolayer WSe2: insight from high magnetic fields. Nano letters 16(11):7054–7060.

    Google Scholar 

  • Stöhr J, Siegmann HC (2006) Magnetism. Solid-state sciences. Springer, Berlin/Heidelberg, p 5

    Google Scholar 

  • Stohr J, Padmore HA, Anders S et al (1998) Principles of x-ray magnetic dichroism spectromicroscopy. Surf Rev Lett 5(06):1297–1308

    Article  CAS  Google Scholar 

  • Strutt JW (1871) XXXVI. On the light from the sky, its polarization and colour. Lond, Edinb Dublin Philos Mag J Sci 41(273):274–279

    Article  Google Scholar 

  • Sun B, Sun MJ, Gu Z et al (2010) Conjugated polymer fluorescence probe for intracellular imaging of magnetic nanoparticles. Macromolecules 43(24):10348–10354

    Article  CAS  Google Scholar 

  • Sun YJ, Tan QH, Liu XL et al (2019) Probing the magnetic ordering of antiferromagnetic MnPS3 by Raman spectroscopy. J Phys Chem Lett 10(11):3087–3093

    Article  CAS  Google Scholar 

  • Testa-Anta M, Ramos-Docampo MA, Comesaña-Hermo M et al (2019) Raman spectroscopy to unravel the magnetic properties of iron oxide nanocrystals for bio-related applications. Nanoscale Adv 1(6):2086–2103

    Article  CAS  Google Scholar 

  • Tietze R, Zaloga J, Unterweger H et al (2015) Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem Biophys Res Commun 468(3):463–470

    Article  CAS  Google Scholar 

  • Urabe H, Sugawara Y, Ataka M et al (1998) Low-frequency Raman spectra of lysozyme crystals and oriented DNA films: dynamics of crystal water. Biophys J 74(3):1533–1540

    Article  CAS  Google Scholar 

  • Vafafard A, Sahrai M (2020) Tunable optical and magneto-optical faraday and Kerr rotations in a dielectric slab doped with double-V type atom. Sci Rep 10(1):1–12

    Article  CAS  Google Scholar 

  • Van der Beek GP, Stuart MC (1988) The hydrodynamic thickness of adsorbed polymer layers measured by dynamic light scattering: effects of polymer concentration and segmental binding strength. J Phys I 49(8):1449–1454

    Article  Google Scholar 

  • Van der Laan G, Figueroa AI (2014) X-ray magnetic circular dichroism – a versatile tool to study magnetism. Coord Chem Rev 277:95–129

    Article  CAS  Google Scholar 

  • Vysotskii VV, Uryupina OY, Gusel’Nikova AV, & Roldugin VI (2009) On the feasibility of determining nanoparticle concentration by the dynamic light scattering method. Colloid journal 71(6):739–744.

    Google Scholar 

  • Wang M, Yin Y (2016) Magnetically responsive nanostructures with tunable optical properties. J Am Chem Soc 138(20):6315–6323

    Article  CAS  Google Scholar 

  • Wang XQ, Wang CF, Zhou ZF (2014) Mechanochromic elastic one-dimensional photonic hydrogels for touch sensing and flexible displays. Adv Opt Mater 2(7):652–662

    Article  CAS  Google Scholar 

  • Wang Z, Zhang F, Shao D et al (2019) Janus nanobullets combine photodynamic therapy and magnetic hyperthermia to potentiate synergetic anti-metastatic immunotherapy. Adv Sci 6(22):1901690

    Article  CAS  Google Scholar 

  • Wang L, Wang Z, Li L et al (2020) Magnetic–plasmonic Ni@Au core–shell nanoparticle arrays and their SERS properties. RSC Adv 10(5):2661–2669

    Article  CAS  Google Scholar 

  • Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397

    Article  CAS  Google Scholar 

  • Wu C, Neuner B III, Shvets G et al (2011) Large-area wide-angle spectrally selective plasmonic absorber. Phys Rev B 84(7):075102

    Article  CAS  Google Scholar 

  • Wu CH, Huang YY, Chen P et al (2013) Versatile immunomagnetic nanocarrier platform for capturing cancer cells. ACS Nano 7(10):8816–8823

    Article  CAS  Google Scholar 

  • Wu L, Dong Y, Zhao J, Ma D, Huang W, Zhang Y, Wang Y, Jiang X, Xiang Y, Li J (2019) Adv. Mater. 31:1807981.

    Google Scholar 

  • Xia Y, Halas NJ (2005) Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull 30(5):338–348

    Article  CAS  Google Scholar 

  • Xu Z, Hou Y, Sun S (2007) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129(28):8698–8699

    Article  CAS  Google Scholar 

  • Xu, R. (2015) Light Scattering: A Review of Particle Characterization Applications. Particuology 18:11–21. https://doi.org/10.1016/j.partic.2014.05.002

  • Yannopapas V, Vanakaras AG (2015) Strong magnetochiral dichroism in suspensions of magnetoplasmonicnanohelices. ACS Photonics 2(8):1030–1038

    Article  CAS  Google Scholar 

  • Yao H, Shiratsu T (2016) Individual and collective modes of surface magnetoplasmon in thiolate-protected silver nanoparticles studied by MCD spectroscopy. Nanoscale 8(21):11264–11274

    Article  CAS  Google Scholar 

  • Yildiz I & Sizirici Yildiz B (2015) Applications of thermoresponsive magnetic nanoparticles. Journal of Nanomaterials, 2015.

    Google Scholar 

  • Zhang C, Wu Z, Chen Z et al (2020) Photonic nanostructures of nanodiscs with multiple magneto-optical properties. J Mater Chem C 8(45):16067–16072

    Article  CAS  Google Scholar 

  • Zhao Z, Zhou Z, Bao J, Wang Z, Hu J, Chi X, … & Gao J (2013) Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging. Nature communications 4(1):1–7.

    Google Scholar 

  • Zhou C, Qi W, Lewis EN et al (2015) Concomitant Raman spectroscopy and dynamic light scattering for characterization of therapeutic proteins at high concentrations. Anal Biochem 472:7–20

    Article  CAS  Google Scholar 

  • Zhu J, Xiao T, Zhang J et al (2020) Surface-charge-switchable nanoclusters for magnetic resonance imaging-guided and glutathione depletion-enhanced photodynamic therapy. ACS Nano 14(9):11225–11237

    Article  CAS  Google Scholar 

  • Zou L, Li X, Zhang J, Ling L (2020) A highly sensitive catalytic hairpin assembly-based dynamic light-scattering biosensors for telomerase detection in bladder cancer diagnosis. Anal Chem 92(18):12656–12662

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthu Arumugam .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kumar, T.S.J., Arumugam, M. (2022). Optical Properties of Magnetic Nanoalloys and Nanocomposites. In: Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-34007-0_18-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34007-0_18-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34007-0

  • Online ISBN: 978-3-030-34007-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics