Skip to main content

Complement Activation by Nanomaterials

  • Chapter
  • First Online:
Interaction of Nanomaterials with the Immune System

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

Complement represents one of the most important innate immune pathways of neutralization of invading pathogens. With years, there has been an increasing awareness of the role of complement in recognition and clearance of engineered nanomaterials including nanopharmaceuticals. Here, we review the main pathways of complement activation, the assays used to characterize complement activation by nanopharmaceuticals, briefly discuss biological/clinical implications of nanomaterial-mediated complement incitement processes, and strategies to avoid complement activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcorlo M, Tortajada A, Rodriguez de Cordoba S, Llorca O. Structural basis for the stabilization of the complement alternative pathway C3 convertase by properdin. Proc Natl Acad Sci U S A. 2013;110:13504–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali YM, Lynch NJ, Haleem KS, Fujita T, Endo Y, Hansen S, Holmskov U, Takahashi K, Stahl GL, Dudler T, Girija UV, Wallis R, Kadioglu A, Stover CM, Andrew PW, Schwaeble WJ. The lectin pathway of complement activation is a critical component of the innate immune response to pneumococcal infection. PLoS Pathog. 2012;8:e1002793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen AJ, Robinson JT, Dai H, Hunter AC, Andresen TL, Moghimi SM. Single-walled carbon nanotube surface control of complement recognition and activation. ACS Nano. 2013;7:1108–19.

    Article  CAS  PubMed  Google Scholar 

  • Andersson J, Ekdahl KN, Lambris JD, Nilsson B. Binding of C3 fragments on top of adsorbed plasma proteins during complement activation on a model biomaterial surface. Biomaterials. 2005;26:1477–85.

    Article  CAS  PubMed  Google Scholar 

  • Azmi ID, Wibroe PP, Wu LP, Kazem AI, Amenitsch H, Moghimi SM, Yaghmur A. A structurally diverse library of safe-by-design citrem-phospholipid lamellar and non-lamellar liquid crystalline nano-assemblies. J Control Release. 2016;239(1–9):1.

    Article  CAS  PubMed  Google Scholar 

  • Banda NK, Wood AK, Takahashi K, Levitt B, Rudd PM, Royle L, Abrahams JL, Stahl GL, Holers VM, Arend WP. Initiation of the alternative pathway of murine complement by immune complexes is dependent on N-glycans in igg antibodies. Arthritis Rheum. 2008;58:3081–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Banda NK, Mehta G, Chao Y, Wang G, Inturi S, Fossati-Jimack L, Botto M, Wu L, Moghimi SM, Simberg D. Mechanisms of complement activation by dextran-coated superparamagnetic iron oxide (SPIO) nanoworms in mouse versus human serum. Part Fibre Toxicol. 2014;11:64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benasutti H, Wang G, Vu VP, Scheinman R, Groman E, Saba L, Simberg D. Variability of complement response toward preclinical and clinical nanocarriers in the general population. Bioconjug Chem. 2017;28:2747–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bexborn F, Andersson PO, Chen H, Nilsson B, Ekdahl KN. The tick-over theory revisited: formation and regulation of the soluble alternative complement C3 convertase (C3(H2o)Bb). Mol Immunol. 2008;45:2370–9.

    Article  CAS  PubMed  Google Scholar 

  • Blaum BS, Hannan JP, Herbert AP, Kavanagh D, Uhrin D, Stehle T. Structural basis for sialic acid-mediated self-recognition by complement factor H. Nat Chem Biol. 2015;11:77–82.

    Article  CAS  PubMed  Google Scholar 

  • Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A. 2007;104:2050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chacko BK, Appukuttan PS. Dextran-binding human plasma antibody recognizes bacterial and yeast antigens and is inhibited by glucose concentrations reached in diabetic sera. Mol Immunol. 2003;39:933–9.

    Article  CAS  PubMed  Google Scholar 

  • Chanan-Khan A, Szebeni J, Savay S, Liebes L, Rafique NM, Alving CR, Muggia FM. Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil): possible role in hypersensitivity reactions. Ann Oncol. 2003;14:1430–7.

    Article  CAS  PubMed  Google Scholar 

  • Chen BM, Su YC, Chang CJ, Burnouf PA, Chuang KH, Chen CH, Cheng TL, Chen YT, Wu JY, Roffler SR. Measurement of pre-existing IgG and IgM antibodies against polyethylene glycol in healthy individuals. Anal Chem. 2016;88:10661–6.

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Wang G, Griffin JI, Brenneman B, Banda NK, Holers VM, Backos DS, Wu L, Moghimi SM, Simberg D. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nat Nanotechnol. 2017;12:387–93.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham CM, Kingzette M, Richards RL, Alving CR, Lint TF, Gewurz H. Activation of human complement by liposomes: a model for membrane activation of the alternative pathway. J Immunol. 1979;122:1237–42.

    CAS  PubMed  Google Scholar 

  • Dai Q, Walkey C, Chan WC. Polyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targeting. Angew Chem Int Ed Engl. 2014;53:5093–6.

    Article  CAS  PubMed  Google Scholar 

  • Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol. 2011;6:39–44.

    Article  CAS  PubMed  Google Scholar 

  • Duncan AR, Winter G. The binding site for C1q on igg. Nature. 1988;332:738–40.

    Article  CAS  PubMed  Google Scholar 

  • Escamilla-Rivera V, Solorio-Rodriguez A, Uribe-Ramirez M, Lozano O, Lucas S, Chagolla-Lopez A, Winkler R, De Vizcaya-Ruiz A. Plasma protein adsorption on Fe3O4-PEG nanoparticles activates the complement system and induces an inflammatory response. Int J Nanomedicine. 2019;14:2055–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fries LF, Gaither TA, Hammer CH, Frank MM. C3b covalently bound to igg demonstrates a reduced rate of inactivation by factors H and I. J Exp Med. 1984;160:1640–55.

    Article  CAS  PubMed  Google Scholar 

  • Gabizon AA, Patil Y, La-Beck NM. New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resist Updat. 2016;29:90–106.

    Article  PubMed  Google Scholar 

  • Gifford G, Vu VP, Banda NK, Holers VM, Wang G, Groman EV, Backos D, Scheinman R, Moghimi SM, Simberg D. Complement therapeutics meets nanomedicine: overcoming human complement activation and leukocyte uptake of nanomedicines with soluble domains of CD55. J Control Release. 2019;302:181–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan J, Shen Q, Zhang Z, Jiang Z, Yang Y, Lou M, Qian J, Lu W, Zhan C. Enhanced immunocompatibility of ligand-targeted liposomes by attenuating natural IgM absorption. Nat Commun. 2018;9:2982.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo RF, Ward PA. Role of C5a in inflammatory responses. Annu Rev Immunol. 2005;23:821–52.

    Article  CAS  PubMed  Google Scholar 

  • Hamad I, Al-Hanbali O, Hunter AC, Rutt KJ, Andresen TL, Moghimi SM. Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere-serum interface: implications for stealth nanoparticle engineering. ACS Nano. 2010;4:6629–38.

    Article  CAS  PubMed  Google Scholar 

  • Hamad I, Hunter AC, Moghimi SM. Complement monitoring of pluronic 127 gel and micelles: suppression of copolymer-mediated complement activation by elevated serum levels of Hdl, Ldl, and apolipoproteins Ai and B-100. J Control Release. 2013;170:167–74.

    Article  CAS  PubMed  Google Scholar 

  • Hamada I, Hunter AC, Szebeni J, Moghimi SM. Poly(ethylene glycol)s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process. Mol Immunol. 2008;46:225–32.

    Article  CAS  Google Scholar 

  • Holers VM. Complement and its receptors: new insights into human disease. Annu Rev Immunol. 2014;32:433–59.

    Article  CAS  PubMed  Google Scholar 

  • Holers VM, Thurman JM. The alternative pathway of complement in disease: opportunities for therapeutic targeting. Mol Immunol. 2004;41:147–52.

    Article  CAS  PubMed  Google Scholar 

  • Holodick NE, Rodriguez-Zhurbenko N, Hernandez AM. Defining natural antibodies. Front Immunol. 2017;8:872.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hourcade DE. The role of Properdin in the assembly of the alternative pathway C3 convertases of complement. J Biol Chem. 2006;281:2128–32.

    Article  CAS  PubMed  Google Scholar 

  • Janssen BJC, Huizinga EG, Raaijmakers HCA, Roos A, Daha MR, Nilsson-Ekdahl K, Nilsson B, Gros P. Structures of complement component C3 provide insights into the function and evolution of immunity. Nature. 2005;437:505–11.

    Article  CAS  PubMed  Google Scholar 

  • Jones JV, James H, Tan MH, Mansour M. Antiphospholipid antibodies require beta 2-glycoprotein I (apolipoprotein H) as cofactor. J Rheumatol. 1992;19:1397–402.

    CAS  PubMed  Google Scholar 

  • Karmali PP, Simberg D. Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin Drug Deliv. 2011;8:343–57.

    Article  CAS  PubMed  Google Scholar 

  • Kemper C, Atkinson JP, Hourcade DE. Properdin: emerging roles of a pattern-recognition molecule. Annu Rev Immunol. 2010;28:131–55.

    Article  CAS  PubMed  Google Scholar 

  • Kirschfink M, Mollnes TE. Modern complement analysis. Clin Diagn Lab Immunol. 2003;10:982–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klapper Y, Hamad OA, Teramura Y, Leneweit G, Nienhaus GU, Ricklin D, Lambris JD, Ekdahl KN, Nilsson B. Mediation of a non-proteolytic activation of complement component C3 by phospholipid vesicles. Biomaterials. 2014;35:3688–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lachmann PJ. Preparing serum for functional complement assays. J Immunol Methods. 2010;352:195–7.

    Article  CAS  PubMed  Google Scholar 

  • Langford-Smith A, Day AJ, Bishop PN, Clark SJ. Complementing the sugar code: role of gags and sialic acid in complement regulation. Front Immunol. 2015;6:25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lutz HU, Nater M, Stammler P. Naturally occurring anti-band 3 antibodies have a unique affinity for C3. Immunology. 1993a;80:191–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz HU, Stammler P, Fasler S. Preferential formation of C3b-igg complexes in vitro and in vivo from nascent C3b and naturally occurring anti-band 3 antibodies. J Biol Chem. 1993b;268:17418–26.

    CAS  PubMed  Google Scholar 

  • Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB. Glycosylation changes of igg associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med. 1995;1:237–43.

    Article  CAS  PubMed  Google Scholar 

  • Meerasa A, Huang JG, Gu FX. CH50: a revisited hemolytic complement consumption assay for evaluation of nanoparticles and blood plasma protein interaction. Curr Drug Deliv. 2011;8:290–8.

    Article  CAS  PubMed  Google Scholar 

  • Moghimi SM. Cancer nanomedicine and the complement system activation paradigm: anaphylaxis and tumour growth. J Control Release. 2014;190:556–62.

    Article  CAS  PubMed  Google Scholar 

  • Moghimi SM, Simberg D. Translational gaps in animal models of human infusion reactions to nanomedicines. Nanomedicine (Lond). 2018;13:973–5.

    Article  CAS  Google Scholar 

  • Moghimi SM, Hamad I, Andresen TL, Jorgensen K, Szebeni J. Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents pegylated liposome-mediated complement activation and anaphylatoxin production. FASEB J. 2006;20:2591–3.

    Article  CAS  PubMed  Google Scholar 

  • Moghimi SM, Hunter AC, Andresen TL. Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu Rev Pharmacol Toxicol. 2012;52:481–503.

    Article  CAS  PubMed  Google Scholar 

  • Moghimi SM, Simberg D, Skotland T, Yaghmur A, Hunter C. The interplay between blood proteins, complement, and macrophages on nanomedicine performance and responses. J Pharmacol Exp Ther. 2019;370:581.

    Article  CAS  PubMed  Google Scholar 

  • Monopoli MP, Bombelli FB, Dawson KA. Nanobiotechnology: nanoparticle coronas take shape. Nat Nanotechnol. 2011;6:11–2.

    Article  CAS  PubMed  Google Scholar 

  • Morgan BP, Harris CL. Complement, a target for therapy in inflammatory and degenerative diseases. Nat Rev Drug Discov. 2015;14:857–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortimer GM, Butcher NJ, Musumeci AW, Deng ZJ, Martin DJ, Minchin RF. Cryptic epitopes of albumin determine mononuclear phagocyte system clearance of nanomaterials. ACS Nano. 2014;8:3357–66.

    Article  CAS  PubMed  Google Scholar 

  • Nayak A, Pednekar L, Reid KB, Kishore U. Complement and non-complement activating functions of C1q: a prototypical innate immune molecule. Innate Immun. 2012;18:350–63.

    Article  CAS  PubMed  Google Scholar 

  • Neun BW, Dobrovolskaia MA. Qualitative analysis of total complement activation by nanoparticles. Methods Mol Biol. 2011;697:237–45.

    Article  CAS  PubMed  Google Scholar 

  • Neun BW, Barenholz Y, Szebeni J, Dobrovolskaia MA. Understanding the role of anti-PEG antibodies in the complement activation by Doxil in vitro. Molecules. 2018;23:1700.

    Article  PubMed Central  CAS  Google Scholar 

  • Nilsson B, Nilsson Ekdahl K. The tick-over theory revisited: is C3 a contact-activated protein? Immunobiology. 2012;217:1106–10.

    Article  CAS  PubMed  Google Scholar 

  • Pauly D, Nagel BM, Reinders J, Killian T, Wulf M, Ackermann S, Ehrenstein B, Zipfel PF, Skerka C, Weber BH. A novel antibody against human properdin inhibits the alternative complement system and specifically detects properdin from blood samples. PLoS One. 2014;9:e96371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pedersen MB, Zhou X, Larsen EK, Sorensen US, Kjems J, Nygaard JV, Nyengaard JR, Meyer RL, Boesen T, Vorup-Jensen T. Curvature of synthetic and natural surfaces is an important target feature in classical pathway complement activation. J Immunol. 2010;184:1931–45.

    Article  CAS  PubMed  Google Scholar 

  • Petersen GH, Alzghari SK, Chee W, Sankari SS, La-Beck NM. Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional non-liposomal doxorubicin. J Control Release. 2016;232:255–64.

    Article  CAS  PubMed  Google Scholar 

  • Reddy ST, van der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O’Neil CP, Lee LK, Swartz MA, Hubbell JA. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol. 2007;25:1159–64.

    Article  CAS  PubMed  Google Scholar 

  • Ricklin D. Manipulating the mediator: modulation of the alternative complement pathway C3 convertase in health, disease and therapy. Immunobiology. 2012;217:1057–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11:785–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risitano AM, Notaro R, Pascariello C, Sica M, del Vecchio L, Horvath CJ, Fridkis-Hareli M, Selleri C, Lindorfer MA, Taylor RP, Luzzatto L, Holers VM. The complement receptor 2/factor H fusion protein Tt30 protects paroxysmal nocturnal hemoglobinuria erythrocytes from complement-mediated hemolysis and C3 fragment. Blood. 2012;119:6307–16.

    Article  CAS  PubMed  Google Scholar 

  • Russell MW, Mansa B. Complement-fixing properties of human Iga antibodies. Alternative pathway complement activation by plastic-bound, but not specific antigen-bound, Iga. Scand J Immunol. 1989;30:175–83.

    Article  CAS  PubMed  Google Scholar 

  • Salvador-Morales C, Zhang L, Langer R, Farokhzad OC. Immunocompatibility properties of lipid-polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials. 2009;30:2231–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, Kelly PM, Aberg C, Mahon E, Dawson KA. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol. 2013;8:137–43.

    Article  CAS  PubMed  Google Scholar 

  • Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol. 2013;11:26.

    Article  CAS  Google Scholar 

  • Schenkein HA, Ruddy S. The role of immunoglobulins in alternative complement pathway activation by zymosan. I. Human igg with specificity for zymosan enhances alternative pathway activation by zymosan. J Immunol. 1981;126:7–10.

    CAS  PubMed  Google Scholar 

  • Song H, Qiao F, Atkinson C, Holers VM, Tomlinson S. A complement C3 inhibitor specifically targeted to sites of complement activation effectively ameliorates collagen-induced arthritis in DBA/1J mice. J Immunol. 2007;179:7860–7.

    Article  CAS  PubMed  Google Scholar 

  • Spitzer D, Mitchell LM, Atkinson JP, Hourcade DE. Properdin can initiate complement activation by binding specific target surfaces and providing a platform for de novo convertase assembly. J Immunol. 2007;179:2600–8.

    Article  CAS  PubMed  Google Scholar 

  • Tavano R, Gabrielli L, Lubian E, Fedeli C, Visentin S, Polverino De Laureto P, Arrigoni G, Geffner-Smith A, Chen F, Simberg D, Morgese G, Benetti EM, Wu L, Moghimi SM, Mancin F, Papini E. C1q-mediated complement activation and C3 opsonization trigger recognition of stealth poly(2-methyl-2-oxazoline)-coated silica nanoparticles by human phagocytes. ACS Nano. 2018;12:5834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas SN, van der Vlies AJ, O’Neil CP, Reddy ST, Yu SS, Giorgio TD, Swartz MA, Hubbell JA. Engineering complement activation on polypropylene sulfide vaccine nanoparticles. Biomaterials. 2011;32:2194–203.

    Article  CAS  PubMed  Google Scholar 

  • Vu VP, Gifford GB, Chen F, Benasutti H, Wang G, Groman EV, Scheinman R, Saba L, Moghimi SM, Simberg D. Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles. Nat Nanotechnol. 2019;14:260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Ishida T, Kiwada H. Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of pegylated liposomes. J Control Release. 2007;119:236–44.

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Chen F, Banda NK, Holers VM, Wu L, Moghimi SM, Simberg D. Activation of human complement system by dextran-coated iron oxide nanoparticles is not affected by dextran/Fe ratio, hydroxyl modifications, and crosslinking. Front Immunol. 2016;7:418.

    PubMed  PubMed Central  Google Scholar 

  • Wang G, Griffin JI, Inturi S, Brenneman B, Banda NK, Holers VM, Moghimi SM, Simberg D. In vitro and in vivo differences in murine third complement component (C3) opsonization and macrophage/leukocyte responses to antibody-functionalized iron oxide nanoworms. Front Immunol. 2017;8:151.

    PubMed  PubMed Central  Google Scholar 

  • Wibroe PP, Mat Azmi ID, Nilsson C, Yaghmur A, Moghimi SM. Citrem modulates internal nanostructure of glyceryl monooleate dispersions and bypasses complement activation: towards development of safe tunable intravenous lipid nanocarriers. Nanomed Nanotechnol Biol Med. 2015;11:1909–14.

    Article  CAS  Google Scholar 

  • Wolf-Grosse S, Rokstad AM, Ali S, Lambris JD, Mollnes TE, Nilsen AM, Stenvik J. Iron oxide nanoparticles induce cytokine secretion in a complement-dependent manner in a human whole blood model. Int J Nanomedicine. 2017;12:3927–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu YQ, Qu H, Sfyroera G, Tzekou A, Kay BK, Nilsson B, Nilsson Ekdahl K, Ricklin D, Lambris JD. Protection of nonself surfaces from complement attack by factor H-binding peptides: implications for therapeutic medicine. J Immunol. 2011;186:4269–77.

    Article  CAS  PubMed  Google Scholar 

  • Zipfel PF, Skerka C. Complement regulators and inhibitory proteins. Nat Rev Immunol. 2009;9:729–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the National Institutes of Health EB022040, CA194058, and CA174560 to DS. S.M.M. acknowledges financial support by International Science and Technology Cooperation of Guangdong Province (reference 2015A050502002) and Guangzhou City (reference 2016201604030050) with RiboBio Co, Ltd., China.

Financial Disclosure

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Simberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simberg, D., Moghimi, S.M. (2020). Complement Activation by Nanomaterials. In: Bonner, J., Brown, J. (eds) Interaction of Nanomaterials with the Immune System. Molecular and Integrative Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-33962-3_6

Download citation

Publish with us

Policies and ethics