Skip to main content

A Fast and Robust Deep Learning Approach for Hand Object Grasping Confirmation

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2019)

Abstract

One of the most important skills for service robots is object manipulation, which is still a challenging task. Since object manipulation is a hard task, it is relevant to know if an object was successfully grasped, avoiding future wrong decisions. Object grasp confirmation is commonly solved by using robotic sensors (infrared, pressure, etc.), but, in many cases, these sensors are not available for all robots. In contrast, depth and RGB sensor are present in almost all service robots. In this work a novel computer vision based method oriented to hand object grasp confirmation is proposed, which uses a deep learning network trained with depth maps. In order to measure the performance of the proposed method, experiments were performed using a single-arm manipulator service robot for both known and unknown objects. Experimental results show that the proposed approach correctly identifies 99% of both classes (object grasped or not grasped) with known objects and \(92\%\) with unknown objects. The grasping confirmation method was added to the Storing Groceries task, for RoboCup@Home competition, improving its time performance.

Sebastián Salazar-Colores (CVU 477758) would like to thank CONACYT (Consejo Nacional de Ciencia y Tecnología) for the financial support of his Ph.D. studies under Scholarship 285651.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A video demonstration is accessible through https://youtu.be/yA5_kS3FlUo.

  2. 2.

    www.robocupathome.org.

  3. 3.

    Service robot performing grasp confirmation in Storing Groceries partial task https://youtu.be/giTvoMBa1Yo.

References

  1. Allen, P.K., Timcenko, A., Yoshimi, B., Michelman, P.: Automated tracking and grasping of a moving object with a robotic hand-eye system. IEEE Trans. Robot. Autom. 9(2), 152–165 (1993). https://doi.org/10.1109/70.238279

    Article  Google Scholar 

  2. Allen, P., Miller, A., Oh, P., Leibowitz, B.: Using tactile and visual sensing with a robotic hand. In: Proceedings of International Conference on Robotics and Automation, vol. 1, pp. 676–681. IEEE (1997). https://doi.org/10.1109/robot.1997.620114

  3. Allen, P., Miller, A., Oh, P., Leibowitz, B.: Integration of vision, force and tactile sensing for grasping. Int. J. Intell. Mach. 4, 129–149 (1999)

    Google Scholar 

  4. Bicchi, A., Kumar, V.: Robotic grasping and contact: a review. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 1, pp. 348–353. IEEE, April 2000. https://doi.org/10.1109/ROBOT.2000.844081

  5. Dang, H., Allen, P.K.: Learning grasp stability. In: 2012 IEEE International Conference on Robotics and Automation, pp. 2392–2397. IEEE (2012)

    Google Scholar 

  6. Guo, D., Sun, F., Fang, B., Yang, C., Xi, N.: Robotic grasping using visual and tactile sensing. Inf. Sci. 417, 274–286 (2017). https://doi.org/10.1016/j.ins.2017.07.017. http://www.sciencedirect.com/science/article/pii/S002002551730837X

    Article  Google Scholar 

  7. Hebert, P., Hudson, N., Ma, J., Burdick, J.: Fusion of stereo vision, force-torque, and joint sensors for estimation of in-hand object location. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 5935–5941. IEEE (2011). https://doi.org/10.1109/ICRA.2011.5980185

  8. Heidemann, G., Ritter, H.: Visual checking of grasping positions of a three-fingered robot hand. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 891–898. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44668-0_123

    Chapter  Google Scholar 

  9. Jara, C.A., Pomares, J., Candelas, F.A., Torres, F.: Control framework for dexterous manipulation using dynamic visual servoing and tactile sensors’ feedback. Sensors 14(1), 1787–1804 (2014)

    Article  Google Scholar 

  10. Konstantinova, J., Stilli, A., Faragasso, A., Althoefer, K.: Fingertip proximity sensor with realtime visual-based calibration. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 170–175, October 2016. https://doi.org/10.1109/IROS.2016.7759051

  11. Krainin, M., Henry, P., Ren, X., Fox, D.: Manipulator and object tracking for in-hand 3D object modeling. Int. J. Robot. Res. 30(11), 1311–1327 (2011). https://doi.org/10.1177/0278364911403178

    Article  Google Scholar 

  12. LeCun, Y., et al.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems, pp. 396–404 (1990)

    Google Scholar 

  13. Patel, R., Curtis, R., Romero, B., Correll, N.: Improving grasp performance using in-hand proximity and contact sensing. In: Sun, Y., Falco, J. (eds.) RGMC 2016. CCIS, vol. 816, pp. 146–160. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94568-2_9

    Chapter  Google Scholar 

  14. Redmon, J., Angelova, A.: Real-time grasp detection using convolutional neural networks. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 1316–1322. IEEE (2015). https://doi.org/10.1109/ICRA.2015.7139361

  15. Roa, M.A., Suárez, R.: Grasp quality measures: review and performance. Auton. Robot. 38(1), 65–88 (2015). https://doi.org/10.1007/s10514-014-9402-3

    Article  Google Scholar 

  16. System, R.O., June 2019. www.ros.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arquímides Méndez-Molina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salazar-Colores, S., Méndez-Molina, A., Carrillo-López, D., Escobar-Juárez, E., Morales, E.F., Sucar, L.E. (2019). A Fast and Robust Deep Learning Approach for Hand Object Grasping Confirmation. In: Martínez-Villaseñor, L., Batyrshin, I., Marín-Hernández, A. (eds) Advances in Soft Computing. MICAI 2019. Lecture Notes in Computer Science(), vol 11835. Springer, Cham. https://doi.org/10.1007/978-3-030-33749-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33749-0_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33748-3

  • Online ISBN: 978-3-030-33749-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics