Skip to main content

Nanostructured Membranes for Water Purification

  • Chapter
  • First Online:
Nanostructured Materials for Treating Aquatic Pollution

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Membrane based processes enjoy numerous industrial applications and have greatly enhanced our capabilities to restructure production processes, protect the environment and public health, and provide new technologies for water purification. The scope of membrane technology is still extending, stimulated by the developments of novel membrane materials and membranes with better properties, as well as by the decrease of capital and operation costs. Recent advances in nanomaterials empower next-generation multifunctional membrane processes with exceptional catalytic, adsorptive, optical and/or antibacterial abilities that enhance treatment cost-efficiency. This chapter reviews emerging opportunities and sustainable approaches for the design of nanostructured membranes for water purification. Potential development and implementation barriers are discussed along with research needs to overcome them for enhancing water purification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Progress on Safe Treatment and Use of Wastewater: Piloting the Monitoring Methodology and Initial Findings for SDG Indicator 6.3.1. World Health Organization and UN-HABITAT, Geneva (2018)

    Google Scholar 

  2. Saraswathi, S.A., Sundaram, M., Nagendran, A., Rana, D.: Tailored polymer nanocomposite membranes based on carbon, metal oxide and silicon nanomaterials: a review. J. Mater. Chem. A 7(15), 8723–8745 (2019)

    Article  Google Scholar 

  3. Fane, A.G., Wang, R., Hu, M.X.: Synthetic membranes for water purification: status and future. Angew. Chem. Int. Ed. 54(11), 3368–3386 (2015)

    Article  CAS  Google Scholar 

  4. Werber, J.R., Osuji, C.O., Elimelech, M.: Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 16018 (2016)

    Google Scholar 

  5. Alvarez, P.J., Chan, C.K., Elimelech, M., Halas, N.J., Villagrán, D.: Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 13(8), 634 (2018)

    Article  CAS  Google Scholar 

  6. Pendergast, M.M., Hoek, E.M.V.: A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4(6), 1946–1971 (2011)

    Article  CAS  Google Scholar 

  7. Qu, X., Alvarez, P.J.J., Li, Q.: Applications of nanotechnology in water and wastewater treatment. Water Res. 47(12), 3931–3946 (2013)

    Article  CAS  Google Scholar 

  8. Li, R., Zhang, L., Wang, P.: Rational design of nanomaterials for water treatment. Nanoscale 7(41), 17167–17194 (2015)

    Article  CAS  Google Scholar 

  9. Yang, H.-C., Hou, J., Chen, V., Xu, Z.-K.: Surface and interface engineering for organic-inorganic composite membranes. J. Mater. Chem. A 4, 9716–9729 (2016)

    Article  CAS  Google Scholar 

  10. Li, X., Liu, Y., Wang, J., Gascon, J., Li, J., Van der Bruggen, B.: Metal-organic frameworks based membranes for liquid separation. Chem. Soc. Rev. 46(23), 7124–7144 (2017)

    Article  CAS  Google Scholar 

  11. Yuan, S., Li, X., Zhu, J., Zhang, G., Van Puyvelde, P., Van der Bruggen, B.: Covalent organic frameworks for membrane separation. Chem. Soc. Rev. 48(10), 2665–2681 (2019)

    Article  CAS  Google Scholar 

  12. Zhu, J., Hou, J., Uliana, A., Zhang, Y., Tian, M., Van der Bruggen, B.: The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes. J. Mater. Chem. A 6(9), 3773–3792 (2018)

    Article  CAS  Google Scholar 

  13. Chernousova, S., Epple, M.: Silver as antibacterial agent: ion, nanoparticle, and metal. Angew. Chem. Int. Ed. 52(6), 1636–1653 (2013)

    Article  CAS  Google Scholar 

  14. Wang, Z., Xia, T., Liu, S.: Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects. Nanoscale 7(17), 7470–7481 (2015)

    Article  CAS  Google Scholar 

  15. Zodrow, K., Brunet, L., Mahendra, S., Li, D., Zhang, A., Li, Q., Alvarez, P.J.J.: Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res. 43(3), 715–723 (2009)

    Article  CAS  Google Scholar 

  16. Zhang, M., Zhang, K., De Gusseme, B., Verstraete, W.: Biogenic silver nanoparticles (bio-Ag0) decrease biofouling of bio-Ag0/PES nanocomposite membranes. Water Res. 46(7), 2077–2087 (2012)

    Article  CAS  Google Scholar 

  17. Mecha, C., Pillay, V.L.: Development and evaluation of woven fabric microfiltration membranes impregnated with silver nanoparticles for potable water treatment. J. Membr. Sci. 458, 149–156 (2014)

    Article  CAS  Google Scholar 

  18. Zhu, J., Hou, J., Zhang, Y., Tian, M., He, T., Liu, J., Chen, V.: Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. J. Membr. Sci. 550, 173–197 (2018)

    Article  CAS  Google Scholar 

  19. Mukherjee, M., De, S.: Antibacterial polymeric membranes: a short review. Environ Sci: Water Res. Technol. 4(8), 1078–1104 (2018)

    CAS  Google Scholar 

  20. Huang, L., Zhao, S., Wang, Z., Wu, J., Wang, J., Wang, S.: In situ immobilization of silver nanoparticles for improving permeability, antifouling and anti-bacterial properties of ultrafiltration membrane. J. Membr. Sci. 499, 269–281 (2016)

    Article  CAS  Google Scholar 

  21. Dong, C., Wang, Z., Wu, J., Wang, Y., Wang, J., Wang, S.: A green strategy to immobilize silver nanoparticles onto reverse osmosis membrane for enhanced anti-biofouling property. Desalination 401, 32–41 (2017)

    Article  CAS  Google Scholar 

  22. Akhavan, O., Abdolahad, M., Abdi, Y., Mohajerzadeh, S.: Silver nanoparticles within vertically aligned multi-wall carbon nanotubes with open tips for antibacterial purposes. J. Mater. Chem. 21(2), 387–393 (2011)

    Article  CAS  Google Scholar 

  23. Huang, X., Marsh, K.L., McVerry, B.T., Hoek, E.M., Kaner, R.B.: Low-fouling antibacterial reverse osmosis membranes via surface grafting of graphene oxide. ACS Appl. Mater. Interface 8(23), 14334–14338 (2016)

    Article  CAS  Google Scholar 

  24. Habib, Z., Khan, S.J., Ahmad, N.M., Shahzad, H.M.A., Jamal, Y., Hashmi, I.: Anti-bacterial behavior of surface modified composite polyamide nanofiltration (NF) membrane by immobilizing Ag doped TiO2 nanoparticles. Environ. Technol. 1–48 (2019, in press)

    Google Scholar 

  25. Rizzello, L., Pompa, P.P.: Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem. Soc. Rev. 43(5), 1501–1518 (2014)

    Article  CAS  Google Scholar 

  26. Jhaveri, J.H., Murthy, Z.V.P.: A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 379, 137–154 (2016)

    Article  CAS  Google Scholar 

  27. Tang, S.C., Lo, I.M.: Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res. 47(8), 2613–2632 (2013)

    Article  CAS  Google Scholar 

  28. Duan, L., Zhao, Q., Liu, J., Zhang, Y.: Antibacterial behavior of halloysite nanotubes decorated with copper nanoparticles in a novel mixed matrix membrane for water purification. Environ. Sci.: Water Res. Technol. 1(6), 874–881 (2015)

    CAS  Google Scholar 

  29. Ma, W., Soroush, A., Luong, T.V.A., Brennan, G., Rahaman, M.S., Asadishad, B., Tufenkji, N.: Spray- and spin-assisted layer-by-layer assembly of copper nanoparticles on thin-film composite reverse osmosis membrane for biofouling mitigation. Water Res. 99, 188–199 (2016)

    Article  CAS  Google Scholar 

  30. Zhu, J., Wang, J., Uliana, A.A., Tian, M., Zhang, Y., Zhang, Y., Volodin, A., Simoens, K., Yuan, S., Li, J.: Mussel-inspired architecture of high-flux loose nanofiltration membrane functionalized with antibacterial reduced graphene oxide–copper nanocomposites. ACS Appl. Mater. Interface 9(34), 28990–29001 (2017)

    Article  CAS  Google Scholar 

  31. Simeonidis, K., Mourdikoudis, S., Kaprara, E., Mitrakas, M., Polavarapu, L.: Inorganic engineered nanoparticles in drinking water treatment: a critical review. Environ. Sci.: Water Res. Technol. 2(1), 43–70 (2016)

    Google Scholar 

  32. Lowry, G.V., Johnson, K.M.: Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ. Sci. Technol. 38(19), 5208–5216 (2004)

    Article  CAS  Google Scholar 

  33. Wang, X., Chen, C., Liu, H., Ma, J.: Preparation and characterization of PAA/PVDF membrane-immobilized Pd/Fe nanoparticles for dechlorination of trichloroacetic acid. Water Res. 42(18), 4656–4664 (2008)

    Article  CAS  Google Scholar 

  34. Wan, H., Briot, N.J., Saad, A., Ormsbee, L., Bhattacharyya, D.: Pore functionalized PVDF membranes with in-situ synthesized metal nanoparticles: material characterization, and toxic organic degradation. J. Membr. Sci. 530, 147–157 (2017)

    Article  CAS  Google Scholar 

  35. Bet-Moushoul, E., Mansourpanah, Y., Farhadi, K., Tabatabaei, M.: TiO2 nanocomposite based polymeric membranes: a review on performance improvement for various applications in chemical engineering processes. Chem. Eng. J. 283, 29–46 (2016)

    Article  CAS  Google Scholar 

  36. Liu, K., Cao, M., Fujishima, A., Jiang, L.: Bio-inspired titanium dioxide materials with special wettability and their applications. Chem. Rev. 114(19), 10044–10094 (2014)

    Article  CAS  Google Scholar 

  37. Chen, X., Mao, S.S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107(7), 2891–2959 (2007)

    Article  CAS  Google Scholar 

  38. Ngang, H., Ooi, B., Ahmad, A., Lai, S.: Preparation of PVDF-TiO2 mixed-matrix membrane and its evaluation on dye adsorption and UV-cleaning properties. Chem. Eng. J. 197, 359–367 (2012)

    Article  CAS  Google Scholar 

  39. Rajesh, S., Senthilkumar, S., Jayalakshmi, A., Nirmala, M., Ismail, A., Mohan, D.: Preparation and performance evaluation of poly (amide-imide) and TiO2 nanoparticles impregnated polysulfone nanofiltration membranes in the removal of humic substances. Colloid Surf. A: Physicochem. Eng. Asp. 418, 92–104 (2013)

    Article  CAS  Google Scholar 

  40. Wang, Y., Li, Y., Yang, H., Xu, Z-l: Super-wetting, photoactive TiO2 coating on amino-silane modified PAN nanofiber membranes for high efficient oil-water emulsion separation application. J. Membr. Sci. 580, 40–48 (2019)

    Article  CAS  Google Scholar 

  41. Zhang, X., Du, A.J., Lee, P., Sun, D.D., Leckie, J.O.: Grafted multifunctional titanium dioxide nanotube membrane: separation and photodegradation of aquatic pollutant. Appl. Catal. B: Environ. 84(1–2), 262–267 (2008)

    Article  CAS  Google Scholar 

  42. Kuvarega, A.T., Khumalo, N., Dlamini, D., Mamba, B.B.: Polysulfone/N, Pd co-doped TiO2 composite membranes for photocatalytic dye degradation. Sep. Purif. Technol. 191, 122–133 (2018)

    Article  CAS  Google Scholar 

  43. Chin, S.S., Chiang, K., Fane, A.G.: The stability of polymeric membranes in a TiO2 photocatalysis process. J. Membr. Sci. 275(1–2), 202–211 (2006)

    Article  CAS  Google Scholar 

  44. Shi, Y., Huang, J., Zeng, G., Cheng, W., Hu, J.: Photocatalytic membrane in water purification: is it stepping closer to be driven by visible light? J. Membr. Sci. 584, 364–392 (2019)

    Article  CAS  Google Scholar 

  45. Li, L., Fan, M., Brown, R.C., Van Leeuwen, J., Wang, J., Wang, W., Song, Y., Zhang, P.: Synthesis, properties, and environmental applications of nanoscale iron-based materials: a review. Crit. Rev. Environ. Sci. Technol. 36(5), 405–431 (2006)

    Article  CAS  Google Scholar 

  46. Xu, G.-R., Wang, J.-N., Li, C.-J.: Preparation of hierarchically nanofibrous membrane and its high adaptability in hexavalent chromium removal from water. Chem. Eng. J. 198, 310–317 (2012)

    Article  CAS  Google Scholar 

  47. Li, C.-J., Li, Y.-J., Wang, J.-N., Cheng, J.: PA6@FexOy nanofibrous membrane preparation and its strong Cr (VI)-removal performance. Chem. Eng. J. 220, 294–301 (2013)

    Article  CAS  Google Scholar 

  48. Daraei, P., Madaeni, S.S., Ghaemi, N., Salehi, E., Khadivi, M.A., Moradian, R., Astinchap, B.: Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu (II) removal from water. J. Membr. Sci. 415, 250–259 (2012)

    Article  CAS  Google Scholar 

  49. Abdi, G., Alizadeh, A., Zinadini, S., Moradi, G.: Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid. J. Membr. Sci. 552, 326–335 (2018)

    Article  CAS  Google Scholar 

  50. Das, D., Nath, B.C., Phukon, P., Dolui, S.K.: Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surf. B 101, 430–433 (2013)

    Article  CAS  Google Scholar 

  51. Shalaby, T., Hamad, H., Ibrahim, E., Mahmoud, O., Al-Oufy, A.: Electrospun nanofibers hybrid composites membranes for highly efficient antibacterial activity. Ecotoxicol. Environ. Saf. 162, 354–364 (2018)

    Article  CAS  Google Scholar 

  52. Leo, C., Lee, W.C., Ahmad, A., Mohammad, A.W.: Polysulfone membranes blended with ZnO nanoparticles for reducing fouling by oleic acid. Sep. Purif. Technol. 89, 51–56 (2012)

    Article  CAS  Google Scholar 

  53. Li, N., Zhang, J., Tian, Y., Zhao, J., Zhang, J., Zuo, W.: Anti-fouling potential evaluation of PVDF membranes modified with ZnO against polysaccharide. Chem. Eng. J. 304, 165–174 (2016)

    Article  CAS  Google Scholar 

  54. Ahmad, A., Abdulkarim, A., Shafie, Z.M., Ooi, B.: Fouling evaluation of PES/ZnO mixed matrix hollow fiber membrane. Desalination 403, 53–63 (2017)

    Article  CAS  Google Scholar 

  55. Chen, X., Huang, G., An, C., Feng, R., Wu, Y., Huang, C.: Plasma-induced PAA-ZnO coated PVDF membrane for oily wastewater treatment: preparation, optimization, and characterization through Taguchi OA design and synchrotron-based X-ray analysis. J. Membr. Sci. 582, 70–82 (2019)

    Article  CAS  Google Scholar 

  56. Li, X., Sotto, A., Li, J., Van der Bruggen, B.: Progress and perspectives for synthesis of sustainable antifouling composite membranes containing in situ generated nanoparticles. J. Membr. Sci. 524, 502–528 (2017)

    Article  CAS  Google Scholar 

  57. Ananth, A., Arthanareeswaran, G., Mok, Y.S.: Effects of in situ and ex situ formations of silica nanoparticles on polyethersulfone membranes. Polym. Bull. 71, 2851–2861 (2014)

    Article  CAS  Google Scholar 

  58. Yang, X., Sun, H., Pal, A., Bai, Y., Shao, L.: Biomimetic silicification on membrane surface for highly efficient treatments of both oil-in-water emulsion and protein wastewater. ACS Appl. Mater. Interface 10(35), 29982–29991 (2018)

    Article  CAS  Google Scholar 

  59. Lv, Y., Yang, H.-C., Liang, H.-Q., Wan, L.-S., Xu, Z.-K.: Novel nanofiltration membrane with ultrathin zirconia film as selective layer. J. Membr. Sci. 500, 265–271 (2016)

    Article  CAS  Google Scholar 

  60. Slater, A.G., Cooper, A.I.: Function-led design of new porous materials. Science 348(6238), 8075 (2015)

    Article  CAS  Google Scholar 

  61. Li, T., Zhang, W., Zhai, S., Gao, G., Ding, J., Zhang, W., Liu, Y., Zhao, X., Pan, B., Lv, L.: Efficient removal of nickel (II) from high salinity wastewater by a novel PAA/ZIF-8/PVDF hybrid ultrafiltration membrane. Water Res. 143, 87–98 (2018)

    Article  CAS  Google Scholar 

  62. Duong, P.H., Kuehl, V.A., Mastorovich, B., Hoberg, J.O., Parkinson, B.A., Li-Oakey, K.D.: Carboxyl-functionalized covalent organic framework as a two-dimensional nanofiller for mixed-matrix ultrafiltration membranes. J. Membr. Sci. 574, 338–348 (2019)

    Article  CAS  Google Scholar 

  63. Zhang, P., Gong, J.-L., Zeng, G.-M., Song, B., Liu, H.-Y., Huan, S.-Y., Li, J.: Ultrathin reduced graphene oxide/MOF nanofiltration membrane with improved purification performance at low pressure. Chemosphere 204, 378–389 (2018)

    Article  CAS  Google Scholar 

  64. Yang, H., Cheng, X., Cheng, X., Pan, F., Wu, H., Liu, G., Song, Y., Cao, X., Jiang, Z.: Highly water-selective membranes based on hollow covalent organic frameworks with fast transport pathways. J. Membr. Sci. 565, 331–341 (2018)

    Article  CAS  Google Scholar 

  65. Shen, J., Liu, G., Huang, K., Jin, W., Lee, K.R., Xu, N.: Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angew. Chem. 127(2), 588–592 (2015)

    Article  Google Scholar 

  66. Liu, G., Cadiau, A., Liu, Y., Adil, K., Chernikova, V., Carja, I.D., Belmabkhout, Y., Karunakaran, M., Shekhah, O., Zhang, C.: Enabling fluorinated MOF-based membranes for simultaneous removal of H2S and CO2 from natural gas. Angew. Chem. Int. Ed. 57(45), 14811–14816 (2018)

    Article  CAS  Google Scholar 

  67. Varoon, K., Zhang, X., Elyassi, B., Brewer, D.D., Gettel, M., Kumar, S., Lee, J.A., Maheshwari, S., Mittal, A., Sung, C.-Y.: Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 334(6052), 72–75 (2011)

    Article  CAS  Google Scholar 

  68. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O.V., Kis, A.: 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 17033 (2017)

    Article  CAS  Google Scholar 

  69. Zheng, Z., Grünker, R., Feng, X.: Synthetic two-dimensional materials: a new paradigm of membranes for ultimate separation. Adv. Mater. 28(31), 6529–6545 (2016)

    Article  CAS  Google Scholar 

  70. Novoselov, K.S., Jiang, D., Schedin, F., Booth, T., Khotkevich, V., Morozov, S., Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451–10453 (2005)

    Article  CAS  Google Scholar 

  71. Edwards, R.S., Coleman, K.S.: Graphene synthesis: relationship to applications. Nanoscale 5(1), 38–51 (2013)

    Article  CAS  Google Scholar 

  72. Yu, J., Li, J., Zhang, W., Chang, H.: Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem. Sci. 6(12), 6705–6716 (2015)

    Article  CAS  Google Scholar 

  73. Tan, C., Zhang, H.: Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat. Commun. 6, 7873 (2015)

    Article  CAS  Google Scholar 

  74. Cohen-Tanugi, D., Grossman, J.C.: Nanoporous graphene as a reverse osmosis membrane: recent insights from theory and simulation. Desalination 366, 59–70 (2015)

    Article  CAS  Google Scholar 

  75. Song, N., Gao, X., Ma, Z., Wang, X., Wei, Y., Gao, C.: A review of graphene-based separation membrane: materials, characteristics, preparation and applications. Desalination 437, 59–72 (2018)

    Article  CAS  Google Scholar 

  76. Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010)

    Article  CAS  Google Scholar 

  77. Sun, P., Wang, K., Zhu, H.: Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications. Adv. Mater. 28(12), 2287–2310 (2016)

    Article  CAS  Google Scholar 

  78. Zhang, N., Qi, W., Huang, L., Jiang, E., Bao, J., Zhang, X., An, B., He, G.: Review on structural control and modification of graphene oxide-based membranes in water treatment: From separation performance to robust operation. Chinese J. Chem. Eng. (2019)

    Google Scholar 

  79. Chen, L., Li, N., Wen, Z., Zhang, L., Chen, Q., Chen, L., Si, P., Feng, J., Li, Y., Lou, J.: Graphene oxide based membrane intercalated by nanoparticles for high performance nanofiltration application. Chem. Eng. J. 347, 12–18 (2018)

    Article  CAS  Google Scholar 

  80. Zhang, H., Quan, X., Chen, S., Fan, X., Wei, G., Yu, H.: Combined effects of surface charge and pore size on co-enhanced permeability and ion selectivity through RGO-OCNT nanofiltration membranes. Environ. Sci. Technol. 52(8), 4827–4834 (2018)

    Article  CAS  Google Scholar 

  81. Azamat, J., Khataee, A.: Improving the performance of heavy metal separation from water using MoS2 membrane: molecular dynamics simulation. Comput. Mater. Sci. 137, 201–207 (2017)

    Article  CAS  Google Scholar 

  82. Heiranian, M., Farimani, A.B., Aluru, N.R.: Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 6, 8616 (2015)

    Article  CAS  Google Scholar 

  83. Hirunpinyopas, W., Prestat, E., Worrall, S.D., Haigh, S.J., Dryfe, R.A., Bissett, M.A.: Desalination and nanofiltration through functionalized laminar MoS2 membranes. ACS Nano 11(11), 11082–11090 (2017)

    Article  CAS  Google Scholar 

  84. Huang, L., Zhang, M., Li, C., Shi, G.: Graphene-based membranes for molecular separation. J. Phys. Chem. Lett. 6(14), 2806–2815 (2015)

    Article  CAS  Google Scholar 

  85. Deng, M., Kwac, K., Li, M., Jung, Y., Park, H.G.: Stability, molecular sieving, and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide. Nano Lett. 17(4), 2342–2348 (2017)

    Article  CAS  Google Scholar 

  86. Sun, L., Ying, Y., Huang, H., Song, Z., Mao, Y., Xu, Z., Peng, X.: Ultrafast molecule separation through layered WS2 nanosheet membranes. ACS Nano 8(6), 6304–6311 (2014)

    Article  CAS  Google Scholar 

  87. Low, I.M.: Advances in ceramic matrix composites: introduction. In: Advances in Ceramic Matrix Composites, pp. 1–7. Elsevier (2018)

    Google Scholar 

  88. Pang, W.K., Low, I.M.: Understanding and improving the thermal stability of layered ternary carbides in ceramic matrix composites. In: Advances in Ceramic Matrix Composites, pp. 340–368. Elsevier (2014)

    Google Scholar 

  89. Chakraborty, P., Das, T., Saha-Dasgupta, T.: MXene: a new trend in 2D materials science. Comprehensive Nanoscience and Nanotechnology, 2nd edn., pp. 319–330 (2018)

    Chapter  Google Scholar 

  90. Ren, C.E., Hatzell, K.B., Alhabeb, M., Ling, Z., Mahmoud, K.A., Gogotsi, Y.: Charge-and size-selective ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett. 6(20), 4026–4031 (2015)

    Article  CAS  Google Scholar 

  91. Ding, L., Wei, Y., Wang, Y., Chen, H., Caro, J., Wang, H.: A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem. Int. Ed. 56(7), 1825–1829 (2017)

    Article  CAS  Google Scholar 

  92. Kang, K.M., Kim, D.W., Ren, C.E., Cho, K.M., Kim, S.J., Choi, J.H., Nam, Y.T., Gogotsi, Y., Jung, H.-T.: Selective molecular separation on Ti3C2Tx-graphene oxide membranes during pressure-driven filtration: comparison with graphene oxide and mXenes. ACS Appl. Mater. Interface 9(51), 44687–44694 (2017)

    Article  CAS  Google Scholar 

  93. Wu, X., Hao, L., Zhang, J., Zhang, X., Wang, J., Liu, J.: Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system. J. Membr. Sci. 515, 175–188 (2016)

    Article  CAS  Google Scholar 

  94. Hao, L., Zhang, H., Wu, X., Zhang, J., Wang, J., Li, Y.: Novel thin-film nanocomposite membranes filled with multi-functional Ti3C2Tx nanosheets for task-specific solvent transport. Compos. A: Appl. Sci. Manuf. 100, 139–149 (2017)

    Article  CAS  Google Scholar 

  95. Kabir, E., Kumar, V., Kim, K.-H., Yip, A.C.K., Sohn, J.R.: Environmental impacts of nanomaterials. J. Environ. Manag. 225, 261–271 (2018)

    Article  CAS  Google Scholar 

  96. Colvin, V.L.: The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 21(10), 1166 (2003)

    Article  CAS  Google Scholar 

  97. Lee, J., Mahendra, S., Alvarez, P.J.: Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4(7), 3580–3590 (2010)

    Article  CAS  Google Scholar 

  98. Patil, S.S., Shedbalkar, U.U., Truskewycz, A., Chopade, B.A., Ball, A.S.: Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environ. Technol. Innov. 5, 10–21 (2016)

    Article  Google Scholar 

  99. Paul, M., Jons, S.D.: Chemistry and fabrication of polymeric nanofiltration membranes: a review. Polymer 103, 417–456 (2016)

    Article  CAS  Google Scholar 

  100. Peyki, A., Rahimpour, A., Jahanshahi, M.: Preparation and characterization of thin film composite reverse osmosis membranes incorporated with hydrophilic SiO2 nanoparticles. Desalination 368, 152–158 (2015)

    Article  CAS  Google Scholar 

  101. Valentino, L., Matsumoto, M., Dichtel, W.R., Mariñas, B.J.: Development and performance characterization of a polyimine covalent organic framework thin-film composite nanofiltration membrane. Environ. Sci. Technol. 51(24), 14352–14359 (2017)

    Article  CAS  Google Scholar 

  102. Akther, N., Phuntsho, S., Chen, Y., Ghaffour, N., Shon, H.K.: Recent advances in nanomaterial-modified polyamide thin-film composite membranes for forward osmosis processes. J. Membr. Sci. 584, 20–45 (2019)

    Article  CAS  Google Scholar 

  103. Wang, Z., Wang, Z., Lin, S., Jin, H., Gao, S., Zhu, Y., Jin, J.: Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nat. Chem. 9(1), 2004 (2018)

    Google Scholar 

  104. Li, X., Fang, X., Pang, R., Li, J., Sun, X., Shen, J., Han, W., Wang, L.: Self-assembly of TiO2 nanoparticles around the pores of PES ultrafiltration membrane for mitigating organic fouling. J. Membr. Sci. 467, 226–235 (2014)

    Article  CAS  Google Scholar 

  105. Fischer, K., Grimm, M., Meyers, J., Dietrich, C., Gläser, R., Schulze, A.: Photoactive microfiltration membranes via directed synthesis of TiO2 nanoparticles on the polymer surface for removal of drugs from water. J. Membr. Sci. 478, 49–57 (2015)

    Article  CAS  Google Scholar 

  106. Hu, Y., Lü, Z., Wei, C., Yu, S., Liu, M., Gao, C.: Separation and antifouling properties of hydrolyzed PAN hybrid membranes prepared via in-situ sol-gel SiO2 nanoparticles growth. J. Membr. Sci. 545, 250–258 (2018)

    Article  CAS  Google Scholar 

  107. Li, X., Li, J., Van der Bruggen, B., Sun, X., Shen, J., Han, W., Wang, L.: Fouling behavior of polyethersulfone ultrafiltration membranes functionalized with sol-gel formed ZnO nanoparticles. RSC Adv. 5(63), 50711–50719 (2015)

    Article  CAS  Google Scholar 

  108. Zhao, X., Jia, N., Cheng, L., Liu, L., Gao, C.: Dopamine-induced biomimetic mineralization for in situ developing antifouling hybrid membrane. J. Membr. Sci. 560, 47–57 (2018)

    Article  CAS  Google Scholar 

  109. Li, X., Pang, R., Li, J., Sun, X., Shen, J., Han, W., Wang, L.: In situ formation of Ag nanoparticles in PVDF ultrafiltration membrane to mitigate organic and bacterial fouling. Desalination 324, 48–56 (2013)

    Article  CAS  Google Scholar 

  110. Miller, D.J., Dreyer, D.R., Bielawski, C.W., Paul, D.R., Freeman, B.D.: Surface modification of water purification membranes. Angew. Chem. Int. Ed. 56(17), 4662–4711 (2017)

    Article  CAS  Google Scholar 

  111. Zhang, R.-X., Braeken, L., Luis, P., Wang, X.-L., Van der Bruggen, B.: Novel binding procedure of TiO2 nanoparticles to thin film composite membranes via self-polymerized polydopamine. J. Membr. Sci. 437, 179–188 (2013)

    Article  CAS  Google Scholar 

  112. Ren, S., Boo, C., Guo, N., Wang, S., Elimelech, M., Wang, Y.: Photocatalytic reactive ultrafiltration membrane for removal of antibiotic resistant bacteria and antibiotic resistance genes from wastewater effluent. Environ. Sci. Technol. 52(15), 8666–8673 (2018)

    Article  CAS  Google Scholar 

  113. Choi, W., Choi, J., Bang, J., Lee, J.-H.: Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications. ACS Appl. Mater. Interface 5(23), 12510–12519 (2013)

    Article  CAS  Google Scholar 

  114. Hegab, H.M., ElMekawy, A., Barclay, T.G., Michelmore, A., Zou, L., Saint, C.P., Ginic-Markovic, M.: Fine-tuning the surface of forward osmosis membranes via grafting graphene oxide: performance patterns and biofouling propensity. ACS Appl. Mater. Interface 7(32), 18004–18016 (2015)

    Article  CAS  Google Scholar 

  115. Guo, H., Lv, R., Bai, S.: Recent advances on 3D printing graphene-based composites. Nano Mater. Sci. 1(2), 101–115 (2019)

    Article  Google Scholar 

  116. Tofail, S.A., Koumoulos, E.P., Bandyopadhyay, A., Bose, S., O’Donoghue, L., Charitidis, C.: Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater. Today 21(1), 22–37 (2018)

    Article  Google Scholar 

  117. Thomas, N., Sreedhar, N., Al-Ketan, O., Rowshan, R., Al-Rub, R.K.A., Arafat, H.: 3D printed triply periodic minimal surfaces as spacers for enhanced heat and mass transfer in membrane distillation. Desalination 443, 256–271 (2018)

    Article  CAS  Google Scholar 

  118. Al-Shimmery, A., Mazinani, S., Ji, J., Chew, Y.J., Mattia, D.: 3D printed composite membranes with enhanced anti-fouling behaviour. J. Membr. Sci. 574, 76–85 (2019)

    Article  CAS  Google Scholar 

  119. Tsai, H.-Y., Huang, A., Luo, Y.-L., Hsu, T.-Y., Chen, C.-H., Hwang, K.-J., Ho, C.-D., Tung, K.-L.: 3D printing design of turbulence promoters in a cross-flow microfiltration system for fine particles removal. J. Membr. Sci. 573, 647–656 (2019)

    Article  CAS  Google Scholar 

  120. Parandoush, P., Lin, D.: A review on additive manufacturing of polymer-fiber composites. Compos. Struct. 182, 36–53 (2017)

    Article  Google Scholar 

  121. Chandrashekara, M., Yadav, A.: Water desalination system using solar heat: a review. Renew. Sustain. Energy Rev. 67, 1308–1330 (2017)

    Article  CAS  Google Scholar 

  122. Shi, Y., Li, C., He, D., Shen, L., Bao, N.: Preparation of graphene oxide-cellulose acetate nanocomposite membrane for high-flux desalination. J. Membr. Sci. 52(22), 13296–13306 (2017)

    CAS  Google Scholar 

  123. Abdelhamid, A.E., Khalil, A.M.: Polymeric membranes based on cellulose acetate loaded with candle soot nanoparticles for water desalination. J. Macromol. Sci. A 56(2), 153–161 (2019)

    Article  CAS  Google Scholar 

  124. Perera, M.G.N., Galagedara, Y.R., Ren, Y., Jayaweera, M., Zhao, Y., Weerasooriya, R.: Fabrication of fullerenol-incorporated thin-film nanocomposite forward osmosis membranes for improved desalination performances. J. Polym. Res. 25(9), 199 (2018)

    Article  CAS  Google Scholar 

  125. Nemati, M., Hosseini, S., Parvizian, F., Rafiei, N., Van der Bruggen, B.: Desalination and heavy metal ion removal from water by new ion exchange membrane modified by synthesized NiFe2O4/HAMPS nanocomposite. Ionics 1–11 (2019)

    Google Scholar 

  126. Daer, S., Kharraz, J., Giwa, A., Hasan, S.W.: Recent applications of nanomaterials in water desalination: a critical review and future opportunities. Desalination 367, 37–48 (2015)

    Article  CAS  Google Scholar 

  127. Teow, Y.H., Mohammad, A.W.: New generation nanomaterials for water desalination: a review. Desalination 451, 2–17 (2019)

    Article  CAS  Google Scholar 

  128. Lopera, A.E.-C., Ruiz, S.G., Alonso, J.M.Q.: Removal of emerging contaminants from wastewater using reverse osmosis for its subsequent reuse: pilot plant. J. Water Process. Eng. 29, 100800 (2019)

    Article  Google Scholar 

  129. Zeng, G., He, Y., Zhan, Y., Zhang, L., Pan, Y., Zhang, C., Yu, Z.: Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal. J. Hazard. Mater. 317, 60–72 (2016)

    Article  CAS  Google Scholar 

  130. Zhang, Y., Zhang, S., Gao, J., Chung, T.-S.: Layer-by-layer construction of graphene oxide (GO) framework composite membranes for highly efficient heavy metal removal. J. Membr. Sci. 515, 230–237 (2016)

    Article  CAS  Google Scholar 

  131. Ghaemi, N., Safari, P.: Nano-porous SAPO-34 enhanced thin-film nanocomposite polymeric membrane: simultaneously high water permeation and complete removal of cationic/anionic dyes from water. J. Hazard. Mater. 358, 376–388 (2018)

    Article  CAS  Google Scholar 

  132. Wang, Z., Ji, S., Zhang, J., He, F., Xu, Z., Peng, S., Li, Y.: Dual functional membrane with multiple hierarchical structures (MHS) for simultaneous and high-efficiency removal of dye and nano-sized oil droplets in water under high flux. J. Membr. Sci. 564, 317–327 (2018)

    Article  CAS  Google Scholar 

  133. Chen, X., Qiu, M., Ding, H., Fu, K., Fan, Y.: A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nanoscale 8(10), 5696–5705 (2016)

    Article  CAS  Google Scholar 

  134. Chae, H.-R., Lee, J., Lee, C.-H., Kim, I.-C., Park, P.-K.: Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. J. Membr. Sci. 483, 128–135 (2015)

    Article  CAS  Google Scholar 

  135. Qu, F., Liang, H., Zhou, J., Nan, J., Shao, S., Zhang, J., Li, G.: Ultrafiltration membrane fouling caused by extracellular organic matter (EOM) from Microcystis aeruginosa: effects of membrane pore size and surface hydrophobicity. J. Membr. Sci. 449, 58–66 (2014)

    Article  CAS  Google Scholar 

  136. Kim, J., Van der Bruggen, B.: The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ. Pollut. 158(7), 2335–2349 (2010)

    Article  CAS  Google Scholar 

  137. Li, X., Li, J., Fang, X., Bakzhan, K., Wang, L., Van der Bruggen, B.: A synergetic analysis method for antifouling behavior investigation on PES ultrafiltration membrane with self-assembled TiO2 nanoparticles. J. Colloid Interface Sci. 469, 164–176 (2016)

    Article  CAS  Google Scholar 

  138. Li, Q., Pan, S., Li, X., Liu, C., Li, J., Sun, X., Shen, J., Han, W., Wang, L.: Hollow mesoporous silica spheres/polyethersulfone composite ultrafiltration membrane with enhanced antifouling property. Colloid Surf. A 487, 180–189 (2015)

    Article  CAS  Google Scholar 

  139. Jiang, Y., Biswas, P., Fortner, J.D.: A review of recent developments in graphene-enabled membranes for water treatment. Environ. Sci.: Water Res. Technol. 2(6), 915–922 (2016)

    CAS  Google Scholar 

  140. Lee, J., Chae, H.-R., Won, Y.J., Lee, K., Lee, C.-H., Lee, H.H., Kim, I.-C., Lee, J-m: Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. J. Membr. Sci. 448, 223–230 (2013)

    Article  CAS  Google Scholar 

  141. Shao, J., Hou, J., Song, H.: Comparison of humic acid rejection and flux decline during filtration with negatively charged and uncharged ultrafiltration membranes. Water Res. 45(2), 473–482 (2011)

    Article  CAS  Google Scholar 

  142. Ong, C., Goh, P., Lau, W., Misdan, N., Ismail, A.: Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: a review. Desalination 393, 2–15 (2016)

    Article  CAS  Google Scholar 

  143. Zhao, H., Qiu, S., Wu, L., Zhang, L., Chen, H., Gao, C.: Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. J. Membr. Sci. 450, 249–256 (2014)

    Article  CAS  Google Scholar 

  144. Sterlitech (2019) https://www.sterlitech.com/flat-sheet-membranes.html

  145. Li, Y., Huang, S., Zhou, S., Fane, A.G., Zhang, Y., Zhao, S.: Enhancing water permeability and fouling resistance of polyvinylidene fluoride membranes with carboxylated nanodiamonds. J. Membr. Sci. 556, 154–163 (2018)

    Article  CAS  Google Scholar 

  146. Osipi, S.R., Secchi, A.R., Borges, C.P.: Cost assessment and retro-techno-economic analysis of desalination technologies in onshore produced water treatment. Desalination 430, 107–119 (2018)

    Article  CAS  Google Scholar 

  147. BCC Research LLC MST041J Membrane Technology for Liquid and Gas Separations (2019). https://www.bccresearch.com/market-research/membrane-and-separation-technology/membrane-separation-technology-research-review.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Van der Bruggen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, X., Molelekwa, G.F., Khellouf, M., Van der Bruggen, B. (2019). Nanostructured Membranes for Water Purification. In: Gonçalves, G., Marques, P. (eds) Nanostructured Materials for Treating Aquatic Pollution. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-33745-2_9

Download citation

Publish with us

Policies and ethics