Skip to main content

Diagnosing Huntington’s Disease Through Gait Dynamics

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2019)

Abstract

This study proposes an automatic method for identifying Huntington’s disease using features extracted from gait signals derived from force-sensitive resistors. Features were extracted using metrics of fluctuation magnitude and fluctuation dynamics, obtained from a detrended Fluctuation Analysis (DFA). In the classification, five machine learning algorithms (Support Vector Machines (SVM), K-Nearest Neighbor (KNN), Naive Bayes (NB), Linear Discriminant Analysis (LDA) and Decision Tree (DT)) were compared by the leave-one-out cross-validation method. Our experiments showed that SVM and DT provided the best results, achieving an average accuracy of 100.0%, representing an improvement compared to other results in the literature, and proving the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander, N.B.: Gait disorders in older adults. J. Am. Geriatr. Soc. 44(4), 434–451 (1996). https://doi.org/10.1111/j.1532-5415.1996.tb06417.x

    Article  Google Scholar 

  2. Altman, D.G., Bland, J.M.: Diagnostic tests. 1: sensitivity and specificity. BMJ: Br. Med. J. 308(6943), 1552 (1994). https://doi.org/10.1136/bmj.308.6943.1552

  3. America, H.D.S.: Overview of Huntington’s disease. https://hdsa.org/what-is-hd/overview-of-huntingtons-disease/

  4. Aziz, W., Arif, M.: Complexity analysis of stride interval time series by threshold dependent symbolic entropy. Eur. J. Appl. Physiol. 98(1), 30–40 (2006). https://doi.org/10.1007/s00421-006-0226-5

    Article  Google Scholar 

  5. Baratin, E., Sugavaneswaran, L., Umapathy, K., Ioana, C., Krishnan, S.: Wavelet-based characterization of gait signal for neurological abnormalities. Gait Posture 41(2), 634–639 (2015). https://doi.org/10.1016/j.gaitpost.2015.01.012

    Article  Google Scholar 

  6. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006)

    MATH  Google Scholar 

  7. Daliri, M.R.: Automated diagnosis of Alzheimer disease using the scale-invariant feature transforms in magnetic resonance images. J. Med. Syst. 36(2), 995–1000 (2012). https://doi.org/10.1007/s10916-011-9738-6

    Article  Google Scholar 

  8. Daliri, M.R.: Automatic diagnosis of neuro-degenerative diseases using gait dynamics. Measurement 45(7), 1729–1734 (2012). https://doi.org/10.1016/j.measurement.2012.04.013

    Article  Google Scholar 

  9. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, Hoboken (2000)

    MATH  Google Scholar 

  10. Foody, G.M., Mathur, A.: A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Remote Sens. 42(6), 1335–1343 (2004). https://doi.org/10.1109/TGRS.2004.827257

    Article  Google Scholar 

  11. Goldfarb, B., Simon, S.: Gait patterns in patients with amyotrophic lateral sclerosis. Arch. Phys. Med. Rehabil. 65(2), 61–65 (1984)

    Google Scholar 

  12. Gupta, K., Khajuria, A., Chatterjee, N., Joshi, P., Joshi, D.: Rule based classification of neurodegenerative diseases using data driven gait features. Health Technol. 1–14 (2018). https://doi.org/10.1007/s12553-018-0274-y

  13. Hausdorff, J.M., Cudkowicz, M.E., Firtion, R., Wei, J.Y., Goldberger, A.L.: Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Mov. Disord. 13(3), 428–437 (1998). https://doi.org/10.1002/mds.870130310

    Article  Google Scholar 

  14. Hausdorff, J.M., Lertratanakul, A., Cudkowicz, M.E., Peterson, A.L., Kaliton, D., Goldberger, A.L.: Gait dynamics in neuro-degenerative disease data base. https://doi.org/10.13026/C27G6C. https://physionet.org/physiobank/database/gaitndd/

  15. Hausdorff, J.M., Lertratanakul, A., Cudkowicz, M.E., Peterson, A.L., Kaliton, D., Goldberger, A.L.: Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. J. Appl. Physiol. 88(6), 2045–2053 (2000). https://doi.org/10.1152/jappl.2000.88.6.2045

    Article  Google Scholar 

  16. Hausdorff, J.M., et al.: Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease. J. Appl. Physiol. 82(1), 262–269 (1997). https://doi.org/10.1152/jappl.1997.82.1.262

    Article  Google Scholar 

  17. Hausdorff, J.M., Peng, C., Ladin, Z., Wei, J.Y., Goldberger, A.L.: Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. J. Appl. Physiol. 78(1), 349–358 (1995). https://doi.org/10.1152/jappl.1995.78.1.349

    Article  Google Scholar 

  18. Hausdorff, J.M., Purdon, P.L., Peng, C., Ladin, Z., Wei, J.Y., Goldberger, A.L.: Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J. Appl. Physiol. 80(5), 1448–1457 (1996). https://doi.org/10.1152/jappl.1996.80.5.1448

    Article  Google Scholar 

  19. Joshi, D., Khajuria, A., Joshi, P.: An automatic non-invasive method for Parkinson’s disease classification. Comput. Methods Programs Biomed. 145, 135–145 (2017). https://doi.org/10.1016/j.cmpb.2017.04.007

    Article  Google Scholar 

  20. Keloth, S.M., Arjunan, S.P., Kumar, D.: Computing the variations in the self-similar properties of the various gait intervals in Parkinson disease patients. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, South Korea, pp. 2434–2437. IEEE, July 2017. https://doi.org/10.1109/EMBC.2017.8037348

  21. Kim, J., Kim, B.S., Savarese, S.: Comparing image classification methods: k-nearest neighbor and support vector machines. Ann Arbor 1001, 48109–2122 (2012)

    Google Scholar 

  22. Mitchell, T.M.: Machine Learning, 1st edn. McGraw-Hill Inc., New York (1997)

    MATH  Google Scholar 

  23. Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L.: Mosaic organization of DNA nucleotides. Phys. Rev. E 49(2), 1685 (1994). https://doi.org/10.1103/PhysRevE.49.1685

    Article  Google Scholar 

  24. Peng, C.K., Buldyrev, S., Goldberger, A., Havlin, S., Simons, M., Stanley, H.: Finite-size effects on long-range correlations: implications for analyzing dna sequences. Phys. Rev. E 47(5), 3730 (1993). https://doi.org/10.1103/physreve.47.3730

    Article  Google Scholar 

  25. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  26. Rish, I., et al.: An empirical study of the naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, pp. 41–46 (2001)

    Google Scholar 

  27. Steinwart, I., Christmann, A.: Support Vector Machines. Springer, New York (2008). https://doi.org/10.1007/978-0-387-77242-4

    Book  MATH  Google Scholar 

  28. Zeng, W., Wang, C.: Classification of neurodegenerative diseases using gait dynamics via deterministic learning. Inf. Sci. 317, 246–258 (2015). https://doi.org/10.1016/j.ins.2015.04.047

    Article  Google Scholar 

  29. Zhou, X., Obuchowski, N., McClish, D.: Statistical Methods in Diagnostic Medicine. New York, NY (2002). https://doi.org/10.1002/9780470906514

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Paula Felix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paula Felix, J., Henrique Teles Vieira, F., Augusto Pereira Franco, R., Martins da Costa, R., Lopes Salvini, R. (2019). Diagnosing Huntington’s Disease Through Gait Dynamics. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2019. Lecture Notes in Computer Science(), vol 11845. Springer, Cham. https://doi.org/10.1007/978-3-030-33723-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33723-0_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33722-3

  • Online ISBN: 978-3-030-33723-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics