Skip to main content

Features of Application of Monte Carlo Method with Markov Chain Algorithms in Bayesian Data Analysis

  • Conference paper
  • First Online:
Advances in Intelligent Systems and Computing IV (CSIT 2019)

Abstract

The article discusses the algorithms of the Monte Carlo method with Markov chains (MCMC). These are the Metropolis-Hastings and Gibbs algorithms. Descriptions and the main features of the algorithms application are given. The MCMC methods are developed to model sets of vectors corresponding to multidimensional probability distributions. The main application of these methods and algorithms in Bayesian data analysis procedures is directed towards study of posterior distributions. The main procedures of Bayesian data analysis are considered and the features of the application of the Metropolis-Hastings and Gibbs algorithms with different types of input data are considered. Examples of application of the algorithms and methods for their evaluation are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersen, T., Bollerslev, T., Lange, S.: Forecasting financial market volatility: sample frequency visa-vis forecast horizon. J. Empirical Finance 6(5), 457–477 (1999)

    Article  Google Scholar 

  2. Bidyuk, P., Gozhyj, A., Kalinina, I., et al.: The methods Bayesian analysis of the threshold stochastic volatility model. In: Proceedings of the 2018 IEEE 2nd International Conference on Data Stream Mining and Processing, DSMP 2018, Lviv, pp. 70–75 (2018)

    Google Scholar 

  3. Bidyuk, P., Gozhyj, A., Kalinina, I., Gozhyj, V.: Analysis of uncertainty types for model building and forecasting dynamic processes. In: Advances in Intelligent Systems and Computing II, vol. 689, pp. 66–78. Springer, Cham (2017)

    Google Scholar 

  4. Blasco, A., Sorensen, D., Bidanel, J.P.: Bayesian inference of genetic parameters and selection response for litter size components in pigs. Genetics 149, 301–306 (1998)

    Google Scholar 

  5. Casella, G., George, E.I.: Explaining the Gibbs sampler. Am. Stat. 46, 167–174 (1992)

    MathSciNet  Google Scholar 

  6. Chib, S., Greenberg, E.: Understanding the metropolis-hastings algorithm. Am. Stat. 49, 327–335 (1995)

    Google Scholar 

  7. Insua, D., Ruggeri, F., Wiper, M.: Bayesian Analysis of Stochastic Process Models. Wiley, Chichester (2012)

    Book  Google Scholar 

  8. Jacquier, E., Polson, N.G., Rossi, P.E.: Bayesian analysis of stochastic volatility models. J. Bus. Econ. Stat. 20, 69–87 (1994)

    Article  MathSciNet  Google Scholar 

  9. Jacquier, E., Polson, N.G., Rossi, P.E.: Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. J. Econometrics 122, 185–212 (2004)

    Article  MathSciNet  Google Scholar 

  10. Gelman, A., Meng, X.: Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives. Wiley, Chichester (2004)

    Book  Google Scholar 

  11. Gelfand, A.E., Smith, A.F.M.: Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85, 398–409 (1990)

    Article  MathSciNet  Google Scholar 

  12. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. A CRC Press Company, Boca Raton (2004)

    MATH  Google Scholar 

  13. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Math. Intell. 6, 721–741 (1984)

    Article  Google Scholar 

  14. Hastings, W.K.: Monte-Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MathSciNet  Google Scholar 

  15. Hoff, P.D.: A First Course in Bayesian Statistical Methods. Springer, New York (2009)

    Book  Google Scholar 

  16. Kondratenko Yuriy, P., Kondratenko Nina, Y.: Reduced library of the soft computing analytic models for arithmetic operations with asymmetrical fuzzy numbers. Int. J. Comput. Res. Huttington 23(4), 349–370 (2016)

    Google Scholar 

  17. Kondratenko, Y.P., Kozlov, O.V., Korobko, O.V., Topalov, A.M.: Internet of Things approach for automation of the complex industrial systems. In: ICTERI-2017, CEUR Workshop Proceedings Open Access, vol. 1844, pp. 3–18 (2017)

    Google Scholar 

  18. Lee, P.: Bayesian Statistics: An Introduction, 2nd edn. Wiley, New York (1997)

    MATH  Google Scholar 

  19. Tanner, M.A., Wong, W.H.: The calculation of posterior distributions by data augmentation source. J. Am. Stat. Assoc. 82(398), 528–540 (1987)

    Article  Google Scholar 

  20. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  21. Raftery, A.E., Lewis, S.: How many iterations in the Gibbs sampler. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (eds.) Bayesian Statistics, vol. 4, pp. 763–773. Oxford University Press (1992)

    Google Scholar 

  22. Raftery, A.E., Lewis, S.: Comment: one long run with diagnostics: implementation strategies for Markov Chain Monte Carlo. Stat. Sci. 7, 493–497 (1992)

    Article  Google Scholar 

  23. Smith, A.F.M.: Bayesian computational methods. Phil. Trans. R. Soc. Lond. A 337, 369–386 (1991)

    Article  MathSciNet  Google Scholar 

  24. Smith, A.F.M., Roberts, G.O.: Bayesian computation via the Gibbs sampler and related Markov chain Monte-Carlo methods (with discussion). J. Roy. Stat. Soc. Ser. B 55, 3–23 (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Gozhyj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bidyuk, P., Matsuki, Y., Gozhyj, A., Beglytsia, V., Kalinina, I. (2020). Features of Application of Monte Carlo Method with Markov Chain Algorithms in Bayesian Data Analysis. In: Shakhovska, N., Medykovskyy, M.O. (eds) Advances in Intelligent Systems and Computing IV. CSIT 2019. Advances in Intelligent Systems and Computing, vol 1080. Springer, Cham. https://doi.org/10.1007/978-3-030-33695-0_25

Download citation

Publish with us

Policies and ethics