Skip to main content

Building New Models: Rethinking and Revising ODE Model Assumptions

  • Chapter
  • First Online:
An Introduction to Undergraduate Research in Computational and Mathematical Biology

Part of the book series: Foundations for Undergraduate Research in Mathematics ((FURM))

Abstract

Ordinary Differential Equation (ODE) models are ubiquitous throughout the sciences, and form the backbone of the branch of mathematics known as applied dynamical systems. However, despite their utility and their analytical and computational tractability, modelers must make certain simplifying assumptions when modeling a system using ODEs. Relaxing (or otherwise changing) these assumptions may lead to the derivation of new ODE or non-ODE models and sometimes these new models can yield results that differ meaningfully in the context of a given application. The goal of this chapter is to explore some approaches to relaxing these ODE model assumptions to derive models which can then be analyzed in ways that parallel or build upon an existing ODE model analysis. To accomplish this, the first part of this chapter (Sect. 2) reviews some common methods for the application and analysis of ODE models. The next section (Sect. 3) explores various ways of deriving new models by modifying the assumptions of existing ODE models. This allows investigators to explore the extent to which ODE model results are robust to changes in model assumptions, and to answer questions that are better addressed using non-ODE models. The last part of this chapter suggests a few specific project ideas (Sect. 4) and encourages undergraduate researchers to share their results through presentations and publications (Sect. 5).

Electronic Supplementary Material The online version of this chapter (https://doi.org/10.1007/978-3-030-33645-5_1) contains supplementary material, which is available to authorized users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This function is often referred to as the right hand side , abbreviated RHS, of the ODE.

  2. 2.

    It is worth mentioning here that multiple different stochastic models can yield the same mean field ODE model.

  3. 3.

    The deterministic equation derived in this first step is called a mean field model because, for a given point X(t) in state space, we take the distribution of possible steps the system might take on the next time step, and define a new model by replacing that random quantity with its mean—in this case, the mean of the binomial random variable U(n = X(t), p = rΔt). One could visualize this on a grid of state space values with vectors pointing from x(t) to x(t + Δt), forming a vector field.

  4. 4.

    For each point in state space, one can think of the derivative \(\frac {d\mathbf {x}}{dt}\) as a vector pointing in a direction that is tangent to the trajectory passing through that point.

  5. 5.

    See upper level dynamical systems texts and online resources for the Taylor expansion of multivariate functions.

  6. 6.

    This definition is used instead of the more common \(p(\lambda )=\det (\mathbf {J}-\lambda \mathbf {I})\) since it ensures that the roots are the eigenvalues of J and that the polynomial is monic, i.e., has a leading coefficient of 1 on the λ n term.

  7. 7.

    Here we give the correct n = 5 case, which is missing a few terms in [4].

  8. 8.

    These basic reproduction numbers are best derived from stability criteria, which often require some rearrangement using a similar interpretation to arrive at the proper form of \(\mathcal {R}_0\).

  9. 9.

    For readers unfamiliar with topological equivalence, this essentially means that the gross qualitative features of solutions are the same across equivalent parameter sets, e.g., the number of equilibrium points and their stability will be the same, even though their exact numerical values may change. See [160, pg. 156], or more advanced treatments of topological equivalence in the texts mentioned above.

  10. 10.

    See the definition of an invariant set, and different types of attractors, in texts like [73, 104].

  11. 11.

    Here, integration by parts will yield an equation for the solution curves x(t), but we proceed assuming no such curves are available as this is typically the case in practice.

  12. 12.

    Here we are glossing over the formal details from singular perturbation theory [103] for deriving equations that approximate the fast- and slow-timescale dynamics of this model.

  13. 13.

    To view the documentation, load the package deSolve with the command library( deSolve) then type ?ode into the R console. See the Appendix for additional resources to get started using R.

  14. 14.

    Here the notation log( x) is used for the natural log function, instead of ln( x) , following the convention used in most modern scientific programming languages. Likewise, exp( x) =e x.

  15. 15.

    For related resources in R, see the packages such as CollocInfer [87], deBInfer [19], or browse the relevant CRAN Task Views (https://cran.r-project.org/web/views/).

  16. 16.

    Here the subscript 0 is used to distinguish the true parameters values μ 0 and σ 0 from the candidate values μ and σ that one might plug in to the likelihood function.

  17. 17.

    Sufficient criteria for the existence of one or more MLEs are that the parameter space is compact and the log likelihood surface is continuous. In practice, non-unique MLEs are more commonly the problem, especially when working with nonlinear ODE models.

  18. 18.

    It is worth pointing out that this model does not have a unique best-fit parameterization, unless certain parameters are held constant (i.e., are already known), even when estimating parameters from ideal data (e.g., a large sample with little or no noise)! This problem and the ways of resolving the issue are detailed in the latter half of this section.

  19. 19.

    See dnorm in R.

  20. 20.

    The performance can be improved somewhat, e.g., by setting the flag kkt=FALSE to avoid unnecessary computations or using parscale when parameter values vary by multiple orders of magnitude. See the documentation for optim and optimx for details.

  21. 21.

    Convergence code 0 indicates no errors, and convergence code 10 indicates degeneracy of the Nelder–Mead simplex. The code 10 often occurs when the model is not identifiable and reaches a “flat spot” in the objective surface.

  22. 22.

    Since the time to the next event under multiple different Poisson processes—one for each event type—is the minimum of the corresponding exponentially distributed event times, it is itself exponentially distributed with a rate that is the sum of the individual rates.

  23. 23.

    Additional intuition for this algorithm can be found in the section in [92] regarding “competing clocks” in a Poisson process framework.

  24. 24.

    The dwell time, or passage time, is the duration of time an individual spends in a given state. As discussed in Sect. 2.1, ODEs with linear loss rate terms implicitly assume that—in the context of Sect. 3.3.1—the times individuals spend in that state are exponentially distributed.

  25. 25.

    For simplicity, we here assume the initial cohort enters state I at t = 0 and thus follows the same dwell time distribution G.

  26. 26.

    Erlang distributions are gamma distributions with integer-valued shape parameters. Compared to exponential distributions, the Erlang density function is more hump shaped and the variance can be made arbitrarily small, as is sometimes desired in applications.

  27. 27.

    Readers familiar with Poisson processes may recall that homogeneous Poisson processes have inter-event times that are exponentially distributed, and the time to the kth event under a homogeneous Poisson process with rate r is Erlang distributed with rate r and shape k.

  28. 28.

    The coefficient of variation is the standard deviation divided by the mean.

  29. 29.

    More generally, if there are multiple lag values τ i, i = 1, …, k, the right hand side is of the form f(t, x(t), x(t − τ 1), …, x(t − τ k), θ).

References

  1. Adamson, M.W., Morozov, A.Y.: When can we trust our model predictions? Unearthing structural sensitivity in biological systems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469(2149) (2012). https://doi.org/10.1098/rspa.2012.0500

    Article  MathSciNet  MATH  Google Scholar 

  2. Adamson, M.W., Morozov, A.Y.: Defining and detecting structural sensitivity in biological models: Developing a new framework. Journal of Mathematical Biology 69(6–7), 1815–1848 (2014). https://doi.org/10.1007/s00285-014-0753-3

    Article  MathSciNet  MATH  Google Scholar 

  3. Allen, E.: Modeling with Itô Stochastic Differential Equations, Mathematical Modelling: Theory and Applications, vol. 22. Springer Netherlands (2007). https://doi.org/10.1007/978-1-4020-5953-7

  4. Allen, L.: An Introduction to Mathematical Biology. Pearson/Prentice Hall (2007)

    Google Scholar 

  5. Allen, L.J.S.: Mathematical Epidemiology, Lecture Notes in Mathematics, vol. 1945, chap. An Introduction to Stochastic Epidemic Models, pp. 81–130. Springer Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78911-6_3

    Chapter  Google Scholar 

  6. Allen, L.J.S.: An Introduction to Stochastic Processes with Applications to Biology. Chapman and Hall/CRC (2010)

    Google Scholar 

  7. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press (1992)

    Google Scholar 

  8. Arino, O., Hbid, M., Dads, E.A. (eds.): Delay Differential Equations and Applications, NATO Science Series, vol. 205. Springer (2006). https://doi.org/10.1007/1-4020-3647-7

    Google Scholar 

  9. Armbruster, B., Beck, E.: Elementary proof of convergence to the mean-field model for the SIR process. Journal of Mathematical Biology 75(2), 327–339 (2017). https://doi.org/10.1007/s00285-016-1086-1

    Article  MathSciNet  MATH  Google Scholar 

  10. Arrowsmith, D.K., Place, C.M.: An Introduction to Dynamical Systems. Cambridge University Press (1990)

    Google Scholar 

  11. Audoly, S., Bellu, G., D’Angio, L., Saccomani, M., Cobelli, C.: Global identifiability of nonlinear models of biological systems. IEEE Transactions on Biomedical Engineering 48(1), 55–65 (2001). https://doi.org/10.1109/10.900248

    Article  MATH  Google Scholar 

  12. Baker, C.T.: A perspective on the numerical treatment of Volterra equations. Journal of Computational and Applied Mathematics 125(1–2), 217–249 (2000). https://doi.org/10.1016/S0377-0427(00)00470-2

    Article  MathSciNet  MATH  Google Scholar 

  13. Banks, H.T., Catenacci, J., Hu, S.: A Comparison of Stochastic Systems with Different Types of Delays. Stochastic Analysis and Applications 31(6), 913–955 (2013). https://doi.org/10.1080/07362994.2013.806217

    Article  MathSciNet  MATH  Google Scholar 

  14. Banks, H.T., Cintrón-Arias, A., Kappel, F.: Mathematical Modeling and Validation in Physiology: Applications to the Cardiovascular and Respiratory Systems, chap. Parameter Selection Methods in Inverse Problem Formulation, pp. 43–73. Springer Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-32882-4_3

    MATH  Google Scholar 

  15. Barrientos, P.G., Rodríguez, J.Á., Ruiz-Herrera, A.: Chaotic dynamics in the seasonally forced SIR epidemic model. Journal of Mathematical Biology 75(6–7), 1655–1668 (2017). https://doi.org/10.1007/s00285-017-1130-9

    Article  MathSciNet  MATH  Google Scholar 

  16. Bayram, M., Partal, T., Buyukoz, G.O.: Numerical methods for simulation of stochastic differential equations. Advances in Difference Equations 2018(1) (2018). https://doi.org/10.1186/s13662-018-1466-5

  17. Bertram, R., Rubin, J.E.: Multi-timescale systems and fast-slow analysis. Mathematical Biosciences 287, 105–121 (2017). https://doi.org/10.1016/j.mbs.2016.07.003. 50th Anniversary Issue

    Article  MathSciNet  MATH  Google Scholar 

  18. Beuter, A., Glass, L., Mackey, M.C., Titcombe, M.S. (eds.): Nonlinear Dynamics in Physiology and Medicine. Interdisciplinary Applied Mathematics (Book 25). Springer (2003)

    Google Scholar 

  19. Boersch-Supan, P.H., Ryan, S.J., Johnson, L.R.: deBInfer: Bayesian inference for dynamical models of biological systems in R. Methods in Ecology and Evolution 8(4), 511–518 (2016). https://doi.org/10.1111/2041-210X.12679

    Article  Google Scholar 

  20. Bolker, B.M.: Ecological Models and Data in R, chap. Dynamic Models (Ch. 11). Princeton University Press (2008). https://ms.mcmaster.ca/~bolker/emdbook/chap11A.pdf

  21. Bolker, B.M.: Ecological Models and Data in R. Princeton University Press (2008)

    Google Scholar 

  22. Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology, 2nd (2012) edn. Texts in Applied Mathematics (Book 40). Springer-Verlag (2011)

    Google Scholar 

  23. Brauer, F., van den Driessche, P., Wu, J. (eds.): Mathematical Epidemiology. Lecture Notes in Mathematics: Mathematical Biosciences Subseries. Springer-Verlag Berlin Heidelberg (2008). https://doi.org/10.1007/978-3-540-78911-6

    MATH  Google Scholar 

  24. Briggs, G.E., Haldane, J.B.S.: A note on the kinetics of enzyme action. Biochemical Journal 19(2), 338–339 (1925). https://doi.org/10.1042/bj0190338

    Article  Google Scholar 

  25. Burton, T., Furumochi, T.: A stability theory for integral equations. Journal of Integral Equations and Applications 6(4), 445–477 (1994). https://doi.org/10.1216/jiea/1181075832

    Article  MathSciNet  MATH  Google Scholar 

  26. Cao, Y., Gillespie, D.T., Petzold, L.R.: Avoiding negative populations in explicit Poisson tau-leaping. The Journal of Chemical Physics 123(5), 054,104 (2005). https://doi.org/10.1063/1.1992473

    Article  Google Scholar 

  27. Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-leaping simulation method. The Journal of Chemical Physics 124(4), 044,109 (2006). https://doi.org/10.1063/1.2159468

    Article  Google Scholar 

  28. Casella, G., Berger, R.: Statistical Inference, 2nd edn. Cengage Learning (2001)

    Google Scholar 

  29. Champredon, D., Dushoff, J., Earn, D.: Equivalence of the Erlang-Distributed SEIR Epidemic Model and the Renewal Equation. SIAM Journal on Applied Mathematics 78(6), 3258–3278 (2018). https://doi.org/10.1137/18M1186411

    Article  MathSciNet  MATH  Google Scholar 

  30. Chapman, A., Mesbahi, M.: Stability analysis of nonlinear networks via M-matrix theory: Beyond linear consensus. In: 2012 American Control Conference (ACC). IEEE (2012). https://doi.org/10.1109/ACC.2012.6315625

  31. Chatterjee, A., Vlachos, D.G., Katsoulakis, M.A.: Binomial distribution based τ-leap accelerated stochastic simulation. The Journal of Chemical Physics 122(2), 024,112 (2005). https://doi.org/10.1063/1.1833357

    Article  Google Scholar 

  32. Cintrón-Arias, A., Banks, H.T., Capaldi, A., Lloyd, A.L.: A sensitivity matrix based methodology for inverse problem formulation. Journal of Inverse and Ill-posed Problems pp. 545–564 (2009). https://doi.org/10.1515/JIIP.2009.034

  33. Cobelli, C., DiStefano, J.J.: Parameter and structural identifiability concepts and ambiguities: A critical review and analysis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 239(1), R7–R24 (1980). https://doi.org/10.1152/ajpregu.1980.239.1.R7

    Article  Google Scholar 

  34. Conlan, A.J., Grenfell, B.T.: Seasonality and the persistence and invasion of measles. Proceedings of the Royal Society B: Biological Sciences 274(1614), 1133–1141 (2007). https://doi.org/10.1098/rspb.2006.0030

    Article  Google Scholar 

  35. Cortez, M.H.: When does pathogen evolution maximize the basic reproductive number in well-mixed host–pathogen systems? Journal of Mathematical Biology 67(6), 1533–1585 (2013). https://doi.org/10.1007/s00285-012-0601-2

    Article  MathSciNet  MATH  Google Scholar 

  36. Cortez, M.H.: Coevolution-driven predator-prey cycles: Predicting the characteristics of eco-coevolutionary cycles using fast-slow dynamical systems theory. Theoretical Ecology 8(3), 369–382 (2015). https://doi.org/10.1007/s12080-015-0256-x

    Article  Google Scholar 

  37. Cortez, M.H., Ellner, S.P.: Understanding rapid evolution in predator-prey interactions using the theory of fast-slow dynamical systems. The American Naturalist 176(5), E109–E127 (2010). https://doi.org/10.1086/656485

    Article  Google Scholar 

  38. Dawes, J., Souza, M.: A derivation of Hollings type I, II and III functional responses in predator–prey systems. Journal of Theoretical Biology 327, 11–22 (2013). https://doi.org/10.1016/j.jtbi.2013.02.017

    MATH  Google Scholar 

  39. Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Computational Neuroscience. The MIT Press (2005)

    MATH  Google Scholar 

  40. Devroye, L.: Non-Uniform Random Variate Generation, chap. General Principles in Random Variate Generation: Inversion Method (§2.2). Springer-Verlag. (1986). http://luc.devroye.org/rnbookindex.html

  41. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs. ACM Transactions on Mathematical Software 29(2), 141–164 (2003). https://doi.org/10.1145/779359.779362

    Article  MathSciNet  MATH  Google Scholar 

  42. Downes, M., Beeton, B.: Short Math Guide for LATE X. American Mathematical Society (2017). https://www.ams.org/tex/amslatex. (Accessed: 22 April 2019)

  43. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences 180(1–2), 29–48 (2002). https://doi.org/10.1016/S0025-5564(02)00108-6

    Article  MathSciNet  MATH  Google Scholar 

  44. Earn, D.J.: A simple model for complex dynamical transitions in epidemics. Science 287(5453), 667–670 (2000). https://doi.org/10.1126/science.287.5453.667

    Article  Google Scholar 

  45. Edelstein-Keshet, L.: Mathematical Models in Biology. Classics in Applied Mathematics (Book 46). Society for Industrial and Applied Mathematics (2005). https://doi.org/10.1137/1.9780898719147

  46. Eisenberg, M.: Generalizing the differential algebra approach to input–output equations in structural identifiability. ArXiv e-prints (2013). https://arxiv.org/abs/1302.5484

  47. Eisenberg, M.C., Hayashi, M.A.: Determining identifiable parameter combinations using subset profiling. Mathematical Biosciences 256, 116–126 (2014). https://doi.org/10.1016/j.mbs.2014.08.008

    Article  MathSciNet  MATH  Google Scholar 

  48. Ellner, S.P.: Pair approximation for lattice models with multiple interaction scales. Journal of Theoretical Biology 210(4), 435–447 (2001). https://doi.org/10.1006/jtbi.2001.2322

    Article  Google Scholar 

  49. Ellner, S.P., Becks, L.: Rapid prey evolution and the dynamics of two-predator food webs. Theoretical Ecology 4(2), 133–152 (2011). https://doi.org/10.1007/s12080-010-0096-7

    Article  Google Scholar 

  50. Ellner, S.P., Guckenheimer, J.: Dynamic Models in Biology. Princeton University Press (2006)

    Google Scholar 

  51. Ellner, S.P., Guckenheimer, J.: Dynamic Models in Biology, chap. Building Dynamic Models (Ch. 9). Princeton University Press (2006). http://assets.press.princeton.edu/chapters/s9_8124.pdf

  52. Ellner, S.P., Guckenheimer, J.: Dynamic Models in Biology, chap. Spatial Patterns in Biology (Ch. 7). Princeton University Press (2006). http://assets.press.princeton.edu/chapters/s7_8124.pdf

  53. Ellner, S.P., Rees, M.: Integral projection models for species with complex demography. The American Naturalist 167(3), 410–428 (2006). https://doi.org/10.1086/499438

    Article  Google Scholar 

  54. Ellner, S.P., Rees, M.: Stochastic stable population growth in integral projection models: theory and application. Journal of Mathematical Biology 54(2), 227–256 (2006). https://doi.org/10.1007/s00285-006-0044-8

    Article  MathSciNet  MATH  Google Scholar 

  55. Ermentrout, B.: XPP/XPPAUT Homepage. http://www.math.pitt.edu/~bard/xpp/xpp.html. (Accessed: April 2019)

  56. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. Software, Environments and Tools (Book 14). Society for Industrial and Applied Mathematics (1987)

    Google Scholar 

  57. Evans, N.D., Chappell, M.J.: Extensions to a procedure for generating locally identifiable reparameterisations of unidentifiable systems. Mathematical Biosciences 168(2), 137–159 (2000). https://doi.org/10.1016/S0025-5564(00)00047-X

    Article  MathSciNet  MATH  Google Scholar 

  58. Feinberg, M.: Complex balancing in general kinetic systems. Archive for Rational Mechanics and Analysis 49(3), 187–194 (1972). https://doi.org/10.1007/BF00255665

    Article  MathSciNet  Google Scholar 

  59. Feinberg, M.: On chemical kinetics of a certain class. Archive for Rational Mechanics and Analysis 46(1), 1–41 (1972). https://doi.org/10.1007/BF00251866

    Article  MathSciNet  Google Scholar 

  60. Feinberg, M.: Chemical reaction network structure and the stability of complex isothermal reactors—i. The deficiency zero and deficiency one theorems. Chemical Engineering Science 42(10), 2229–2268 (1987). https://doi.org/10.1016/0009-2509(87)80099-4

    Google Scholar 

  61. Feinberg, M.: Foundations of Chemical Reaction Network Theory. Springer International Publishing (2019). https://doi.org/10.1007/978-3-030-03858-8

    Book  MATH  Google Scholar 

  62. Feinberg, M., Ellison, P., Ji, H., Knight, D.: Chemical reaction network toolbox. https://crnt.osu.edu/CRNTWin. (Accessed: April 2019)

  63. Feng, Z., Thieme, H.: Endemic models with arbitrarily distributed periods of infection I: Fundamental properties of the model. SIAM Journal on Applied Mathematics 61(3), 803–833 (2000). https://doi.org/10.1137/S0036139998347834

    Article  MathSciNet  MATH  Google Scholar 

  64. Feng, Z., Xu, D., Zhao, H.: Epidemiological models with non-exponentially distributed disease stages and applications to disease control. Bulletin of Mathematical Biology 69(5), 1511–1536 (2007). https://doi.org/10.1007/s11538-006-9174-9

    Article  MathSciNet  MATH  Google Scholar 

  65. Feng, Z., Zheng, Y., Hernandez-Ceron, N., Zhao, H., Glasser, J.W., Hill, A.N.: Mathematical models of Ebola—Consequences of underlying assumptions. Mathematical biosciences 277, 89–107 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  66. Fiechter, J., Rose, K.A., Curchitser, E.N., Hedstrom, K.S.: The role of environmental controls in determining sardine and anchovy population cycles in the California Current: Analysis of an end-to-end model. Progress in Oceanography 138, 381–398 (2015). https://doi.org/10.1016/j.pocean.2014.11.013

    Article  Google Scholar 

  67. Ghil, M., Zaliapin, I., Thompson, S.: A delay differential model of ENSO variability: Parametric instability and the distribution of extremes. Nonlinear Processes in Geophysics 15(3), 417–433 (2008). https://doi.org/10.5194/npg-15-417-2008

    Article  Google Scholar 

  68. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics 22(4), 403–434 (1976). https://doi.org/10.1016/0021-9991(76)90041-3

    Article  MathSciNet  Google Scholar 

  69. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977). https://doi.org/10.1021/j100540a008

    Article  Google Scholar 

  70. Givens, G.H., Hoeting, J.A.: Computational Statistics, 2nd edn. Computational Statistics. John Wiley & Sons (2012)

    Book  MATH  Google Scholar 

  71. Grassly, N.C., Fraser, C.: Seasonal infectious disease epidemiology. Proceedings of the Royal Society B: Biological Sciences 273(1600), 2541–2550 (2006). https://doi.org/10.1098/rspb.2006.3604

    Article  Google Scholar 

  72. Grimm, V., Railsback, S.F.: Individual-based Modeling and Ecology. Princeton University Press (2005)

    Google Scholar 

  73. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, corr. 6th printing, 6th edn. Applied Mathematical Sciences. Springer (2002)

    Google Scholar 

  74. Guckenheimer, J., Myers, M.: Computing Hopf Bifurcations. II: Three Examples From Neurophysiology. SIAM Journal on Scientific Computing 17(6), 1275–1301 (1996). https://doi.org/10.1137/S1064827593253495

    MATH  Google Scholar 

  75. Guckenheimer, J., Myers, M., Sturmfels, B.: Computing Hopf Bifurcations I. SIAM Journal on Numerical Analysis 34(1), 1–21 (1997). https://doi.org/10.1137/S0036142993253461

    Article  MathSciNet  MATH  Google Scholar 

  76. Hansen, J.A., Penland, C.: Efficient approximate techniques for integrating stochastic differential equations. Monthly Weather Review 134(10), 3006–3014 (2006). https://doi.org/10.1175/MWR3192.1

    Article  Google Scholar 

  77. Hanski, I.A.: Metapopulation Ecology. Oxford Series in Ecology and Evolution. Oxford University Press (1999)

    Google Scholar 

  78. Heitmann, S.: Brain Dynamics Toolbox (2018). http://bdtoolbox.org. (Accessed: 20 June 2019) Alt. URL https://github.com/breakspear/bdtoolkit/

  79. Helton, J., Davis, F.: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering & System Safety 81(1), 23–69 (2003). https://doi.org/10.1016/S0951-8320(03)00058-9

    Article  Google Scholar 

  80. Hethcote, H.W., Tudor, D.W.: Integral equation models for endemic infectious diseases. Journal of Mathematical Biology 9(1), 37–47 (1980). https://doi.org/10.1007/BF00276034

    Article  MathSciNet  MATH  Google Scholar 

  81. Hethcote, H.W., Yorke, J.A.: Gonorrhea Transmission Dynamics and Control. Lecture Notes in Biomathematics. Springer Berlin Heidelberg (1984). https://doi.org/10.1007/978-3-662-07544-9

    Book  MATH  Google Scholar 

  82. Hiebeler, D.E., Millett, N.E.: Pair and triplet approximation of a spatial lattice population model with multiscale dispersal using Markov chains for estimating spatial autocorrelation. Journal of Theoretical Biology 279(1), 74–82 (2011). https://doi.org/10.1016/j.jtbi.2011.03.027

    Article  MathSciNet  MATH  Google Scholar 

  83. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review 43(3), 525–546 (2001). https://doi.org/10.1137/S0036144500378302

    Article  MathSciNet  MATH  Google Scholar 

  84. Hirsch, M.W., Smale, S., Devaney, R.L.: Differential Equations, Dynamical Systems, and an Introduction to Chaos, 3rd edn. Elsevier (2013). https://doi.org/10.1016/C2009-0-61160-0

  85. Hogg, R.V., McKean, J.W., Craig, A.T.: Introduction to Mathematical Statistics, 7th edn. Pearson (2012)

    Google Scholar 

  86. Hooker, G.: MATLAB Functions for Profiled Estimation of Differential Equations (2010). http://faculty.bscb.cornell.edu/~hooker/profile_webpages/

    Google Scholar 

  87. Hooker, G., Ramsay, J.O., Xiao, L.: CollocInfer: Collocation inference in differential equation models. Journal of Statistical Software 75(2), 1–52 (2016). https://doi.org/10.18637/jss.v075.i02

    Article  Google Scholar 

  88. Hooker, G., Xiao, L., Ramsay, J.: CollocInfer: An R Library for Collocation Inference for Continuous- and Discrete-Time Dynamic Systems (2010). http://faculty.bscb.cornell.edu/~hooker/profile_webpages/

    Google Scholar 

  89. Hurtado, P.J.: The potential impact of disease on the migratory structure of a partially migratory passerine population. Bulletin of Mathematical Biology 70(8), 2264 (2008). https://doi.org/10.1007/s11538-008-9345-y

    Article  MathSciNet  MATH  Google Scholar 

  90. Hurtado, P.J.: Within-host dynamics of mycoplasma infections: Conjunctivitis in wild passerine birds. Journal of Theoretical Biology 306, 73–92 (2012). https://doi.org/10.1016/j.jtbi.2012.04.018

    Article  MathSciNet  MATH  Google Scholar 

  91. Hurtado, P.J., Hall, S.R., Ellner, S.P.: Infectious disease in consumer populations: Dynamic consequences of resource-mediated transmission and infectiousness. Theoretical Ecology 7(2), 163–179 (2014). https://doi.org/10.1007/s12080-013-0208-2

    Article  Google Scholar 

  92. Hurtado, P.J., Kirosingh, A.S.: Generalizations of the ‘Linear Chain Trick’: Incorporating more flexible dwell time distributions into mean field ODE models. Journal of Mathematical Biology 79, 1831–1883 (2019). https://doi.org/10.1007/s00285-019-01412-w

    Article  MathSciNet  MATH  Google Scholar 

  93. Iacus, S.M.: Simulation and Inference for Stochastic Differential Equations. Springer New York (2008)

    Google Scholar 

  94. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. Computational Neuroscience. MIT Press (2010)

    Google Scholar 

  95. Keener, J., Sneyd, J.: Mathematical Physiology I: Cellular Physiology, 2nd edn. Springer (2008)

    Google Scholar 

  96. Keener, J., Sneyd, J.: Mathematical Physiology II: Systems Physiology, 2nd edn. Springer (2008)

    Google Scholar 

  97. Kendall, B.E., Briggs, C.J., Murdoch, W.W., Turchin, P., Ellner, S.P., McCauley, E., Nisbet, R.M., Wood, S.N.: Why do populations cycle? A synthesis of statistical and mechanistic modeling approaches. Ecology 80(6), 1789–1805 (1999). https://doi.org/10.1890/0012-9658(1999)080[1789:WDPCAS]2.0.CO;2

    Article  Google Scholar 

  98. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 115(772), 700–721 (1927)

    Google Scholar 

  99. Koopman, J.: Modeling infection transmission. Annual Review of Public Health 25(1), 303–326 (2004). https://doi.org/10.1146/annurev.publhealth.25.102802.124353

    Article  Google Scholar 

  100. Kot, M.: Elements of Mathematical Ecology. Cambridge University Press (2014)

    Google Scholar 

  101. Kozubowski, T.J., Panorska, A.K., Forister, M.L.: A discrete truncated Pareto distribution. Statistical Methodology 26, 135–150 (2015). https://doi.org/10.1016/j.stamet.2015.04.002

    Article  MathSciNet  MATH  Google Scholar 

  102. Krylova, O., Earn, D.J.D.: Effects of the infectious period distribution on predicted transitions in childhood disease dynamics. Journal of The Royal Society Interface 10(84) (2013). https://doi.org/10.1098/rsif.2013.0098

    Article  Google Scholar 

  103. Kuehn, C.: Multiple Time Scale Dynamics, Applied Mathematical Sciences, vol. 191, 1 edn. Springer International Publishing (2015). https://doi.org/10.1007/978-3-319-12316-5

    Book  MATH  Google Scholar 

  104. Kuznetsov, Y.: Elements of Applied Bifurcation Theory, 3 edn. Applied Mathematical Sciences. Springer New York (2004)

    Book  MATH  Google Scholar 

  105. Lande, R., Engen, S., Saether, B.E.: Stochastic Population Dynamics in Ecology and Conservation. Oxford University Press (2003). https://doi.org/10.1093/acprof:oso/9780198525257.001.0001

    Google Scholar 

  106. Larsen, R.J., Marx, M.L.: Introduction to Mathematical Statistics and Its Applications, 5th edn. Pearson (2011)

    Google Scholar 

  107. Lee, E.C., Kelly, M.R., Ochocki, B.M., Akinwumi, S.M., Hamre, K.E., Tien, J.H., Eisenberg, M.C.: Model distinguishability and inference robustness in mechanisms of cholera transmission and loss of immunity. Journal of Theoretical Biology 420, 68–81 (2017). https://doi.org/10.1016/j.jtbi.2017.01.032

    Article  MathSciNet  MATH  Google Scholar 

  108. Lee, S., Chowell, G.: Exploring optimal control strategies in seasonally varying flu-like epidemics. Journal of Theoretical Biology 412, 36–47 (2017). https://doi.org/10.1016/j.jtbi.2016.09.023

    Article  MathSciNet  MATH  Google Scholar 

  109. Levin, S.A., Powell, T.M., Steele, J.W. (eds.): Patch Dynamics. Springer Berlin Heidelberg (1993). https://doi.org/10.1007/978-3-642-50155-5

    MATH  Google Scholar 

  110. Liao, J., Li, Z., Hiebeler, D.E., Iwasa, Y., Bogaert, J., Nijs, I.: Species persistence in landscapes with spatial variation in habitat quality: A pair approximation model. Journal of Theoretical Biology 335, 22–30 (2013). https://doi.org/10.1016/j.jtbi.2013.06.015

    Article  MathSciNet  MATH  Google Scholar 

  111. Linz, P.: Analytical and Numerical Methods for Volterra Equations. Society for Industrial and Applied Mathematics (1985). https://doi.org/10.1137/1.9781611970852

  112. Liu, Y., Khim, J.: Taylor’s theorem (with Lagrange remainder). https://brilliant.org/wiki/taylors-theorem-with-lagrange-remainder/. (Accessed 15 April 2019)

  113. Ma, J., Earn, D.J.D.: Generality of the final size formula for an epidemic of a newly invading infectious disease. Bulletin of Mathematical Biology 68(3), 679–702 (2006). https://doi.org/10.1007/s11538-005-9047-7

    Article  MathSciNet  MATH  Google Scholar 

  114. Marino, S., Hogue, I.B., Ray, C.J., Kirschner, D.E.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. Journal of Theoretical Biology 254(1), 178–196 (2008). https://doi.org/10.1016/j.jtbi.2008.04.011

    Article  MathSciNet  MATH  Google Scholar 

  115. Mathworks: MATLAB Documentation: Choose an ODE solver. https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html. (Accessed: April 2019)

  116. Mathworks: MATLAB Documentation: Solve Stiff ODEs. https://www.mathworks.com/help/matlab/math/solve-stiff-odes.html. (Accessed: April 2019)

  117. May, R.: Stability and Complexity in Model Ecosystems. Landmarks in Biology Series. Princeton University Press (2001)

    Book  MATH  Google Scholar 

  118. McCann, K.S.: Food Webs. Monographs in Population Biology (Book 57). Princeton University Press (2011)

    Google Scholar 

  119. Meiss, J.D.: Differential Dynamical Systems, Revised Edition. Society for Industrial and Applied Mathematics, Philadelphia, PA (2017). https://doi.org/10.1137/1.9781611974645

  120. Merow, C., Dahlgren, J.P., Metcalf, C.J.E., Childs, D.Z., Evans, M.E., Jongejans, E., Record, S., Rees, M., Salguero-Gómez, R., McMahon, S.M.: Advancing population ecology with integral projection models: a practical guide. Methods in Ecology and Evolution 5(2), 99–110 (2014). https://doi.org/10.1111/2041-210X.12146

    Article  Google Scholar 

  121. Meshkat, N., Eisenberg, M., DiStefano, J.J.: An algorithm for finding globally identifiable parameter combinations of nonlinear ODE models using Gröbner bases. Mathematical Biosciences 222(2), 61–72 (2009). https://doi.org/10.1016/j.mbs.2009.08.010

    Article  MathSciNet  MATH  Google Scholar 

  122. Meshkat, N., zhen Kuo, C.E., Joseph DiStefano, I.: On finding and using identifiable parameter combinations in nonlinear dynamic systems biology models and COMBOS: A novel web implementation. PLoS ONE 9(10), e110,261 (2014). https://doi.org/10.1371/journal.pone.0110261

    Article  Google Scholar 

  123. Miao, H., Dykes, C., Demeter, L.M., Wu, H.: Differential equation modeling of HIV viral fitness experiments: Model identification, model selection, and multimodel inference. Biometrics 65(1), 292–300 (2008). https://doi.org/10.1111/j.1541-0420.2008.01059.x

    Article  MathSciNet  MATH  Google Scholar 

  124. Moraes, A., Tempone, R., Vilanova, P.: Hybrid Chernoff Tau-Leap. Multiscale Modeling & Simulation 12(2), 581–615 (2014). https://doi.org/10.1137/130925657

    Article  MathSciNet  MATH  Google Scholar 

  125. Murdoch, W.W., Briggs, C.J., Nisbet, R.M.: Consumer–Resource Dynamics, Monographs in Population Biology, vol. 36. Princeton University Press, Princeton, USA (2003)

    Google Scholar 

  126. Murray, J.D.: Mathematical Biology: I. An Introduction. Interdisciplinary Applied Mathematics (Book 17). Springer (2007)

    Google Scholar 

  127. Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications. Interdisciplinary Applied Mathematics (Book 18). Springer (2011)

    Google Scholar 

  128. Nash, J.C.: On best practice optimization methods in R. Journal of Statistical Software 60(2), 1–14 (2014). http://www.jstatsoft.org/v60/i02/

    Article  Google Scholar 

  129. Nash, J.C., Varadhan, R.: Unifying optimization algorithms to aid software system users: optimx for R. Journal of Statistical Software 43(9), 1–14 (2011). http://www.jstatsoft.org/v43/i09/

    Article  Google Scholar 

  130. Newman, M.: Networks, 2nd edn. Oxford University Press (2018)

    Google Scholar 

  131. Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 6th ed. (6th corrected printing 2013) edn. Springer-Verlag Berlin Heidelberg (2003). https://doi.org/10.1007/978-3-642-14394-6

    Book  MATH  Google Scholar 

  132. Ovaskainen, O., Saastamoinen, M.: Frontiers in Metapopulation Biology: The Legacy of Ilkka Hanski. Annual Review of Ecology, Evolution, and Systematics 49(1), 231–252 (2018). https://doi.org/10.1146/annurev-ecolsys-110617-062519

    Article  Google Scholar 

  133. Pineda-Krch, M.: GillespieSSA: Gillespie’s Stochastic Simulation Algorithm (SSA) (2010). https://CRAN.R-project.org/package=GillespieSSA. R package version 0.5-4

  134. Poggiale, J.C., Aldebert, C., Girardot, B., Kooi, B.W.: Analysis of a predator–prey model with specific time scales: A geometrical approach proving the occurrence of canard solutions. Journal of Mathematical Biology (2019). https://doi.org/10.1007/s00285-019-01337-4

    Article  MathSciNet  Google Scholar 

  135. Porter, M.A., Gleeson, J.P.: Dynamics on Networks: A Tutorial. ArXiv e-prints (2015). http://arxiv.org/abs/1403.7663v2

  136. Porter, M.A., Gleeson, J.P.: Dynamical Systems on Networks: A Tutorial, Frontiers in Applied Dynamical Systems: Reviews and Tutorials, vol. 4. Springer (2016). https://doi.org/10.1007/978-3-319-26641-1

    Book  MATH  Google Scholar 

  137. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2019). https://www.R-project.org/

  138. Rackauckas, C.: A Comparison Between Differential Equation Solver Suites In MATLAB, R, Julia, Python, C, Mathematica, Maple, and Fortran. The Winnower (2018). https://doi.org/10.15200/winn.153459.98975

    Google Scholar 

  139. Ramsay, J.O., Hooker, G., Campbell, D., Cao, J.: Parameter estimation for differential equations: A generalized smoothing approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69(5), 741–796 (2007). https://doi.org/10.1111/j.1467-9868.2007.00610.x

    Article  MathSciNet  Google Scholar 

  140. Rand, R.H.: Lecture notes on nonlinear vibrations. Cornell eCommons (2012). https://hdl.handle.net/1813/28989

  141. Raue, A., Kreutz, C., Bachmann, J., Timmer, J., Schilling, M., Maiwald, T., Klingmüller, U.: Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25(15), 1923–1929 (2009). https://doi.org/10.1093/bioinformatics/btp358

    Article  Google Scholar 

  142. Reynolds, A., Rubin, J., Clermont, G., Day, J., Vodovotz, Y., Ermentrout, G.B.: A reduced mathematical model of the acute inflammatory response: I. Derivation of model and analysis of anti-inflammation. Journal of Theoretical Biology 242(1), 220–236 (2006). https://doi.org/10.1016/j.jtbi.2006.02.016

    Google Scholar 

  143. Rinaldi, S., Muratori, S., Kuznetsov, Y.: Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities. Bulletin of Mathematical Biology 55(1), 15–35 (1993). https://doi.org/10.1007/BF02460293

    Article  MATH  Google Scholar 

  144. Rose, K.A., Fiechter, J., Curchitser, E.N., Hedstrom, K., Bernal, M., Creekmore, S., Haynie, A., ichi Ito, S., Lluch-Cota, S., Megrey, B.A., Edwards, C.A., Checkley, D., Koslow, T., McClatchie, S., Werner, F., MacCall, A., Agostini, V.: Demonstration of a fully-coupled end-to-end model for small pelagic fish using sardine and anchovy in the California Current. Progress in Oceanography 138, 348–380 (2015). https://doi.org/10.1016/j.pocean.2015.01.012

    Article  Google Scholar 

  145. Ross, S.: Introduction to Probability Models, 11th edn. Elsevier (2014). https://doi.org/10.1016/C2012-0-03564-8

  146. Saccomani, M.P., Audoly, S., DAngiò, L.: Parameter identifiability of nonlinear systems: The role of initial conditions. Automatica 39(4), 619–632 (2003). https://doi.org/10.1016/S0005-1098(02)00302-3

    Article  MathSciNet  MATH  Google Scholar 

  147. Sauer, T.: Computational solution of stochastic differential equations. Wiley Interdisciplinary Reviews: Computational Statistics 5(5), 362–371 (2013). https://doi.org/10.1002/wics.1272

    Article  Google Scholar 

  148. Schelter, W.F.: Maxima (2000). http://maxima.sourceforge.net/. (Accessed: April 2019)

    Google Scholar 

  149. Segel, L., Edelstein-Keshet, L.: A Primer on Mathematical Models in Biology. Society for Industrial and Applied Mathematics, Philadelphia, PA (2013). https://doi.org/10.1137/1.9781611972504

    Book  MATH  Google Scholar 

  150. Shaw, A.K., Binning, S.A.: Migratory recovery from infection as a selective pressure for the evolution of migration. The American Naturalist 187(4), 491–501 (2016). https://doi.org/10.1086/685386

    Article  Google Scholar 

  151. Shertzer, K.W., Ellner, S.P., Fussmann, G.F., Hairston, N.G.: Predator–prey cycles in an aquatic microcosm: Testing hypotheses of mechanism. Journal of Animal Ecology 71(5), 802–815 (2002). https://doi.org/10.1046/j.1365-2656.2002.00645.x

    Article  Google Scholar 

  152. Shinar, G., Alon, U., Feinberg, M.: Sensitivity and Robustness in Chemical Reaction Networks. SIAM Journal on Applied Mathematics 69(4), 977–998 (2009). https://doi.org/10.1137/080719820

    Article  MathSciNet  MATH  Google Scholar 

  153. Shoffner, S., Schnell, S.: Approaches for the estimation of timescales in nonlinear dynamical systems: Timescale separation in enzyme kinetics as a case study. Mathematical Biosciences 287, 122–129 (2017). https://doi.org/10.1016/j.mbs.2016.09.001

    Article  MathSciNet  MATH  Google Scholar 

  154. Smith, H.: An introduction to delay differential equations with applications to the life sciences, vol. 57. Springer (2010)

    Google Scholar 

  155. Society for Industrial and Applied Mathematics: DSWeb Dynamical Systems Software. https://dsweb.siam.org/Software. (Accessed: 1 April 2019)

  156. Soetaert, K., Petzoldt, T., Setzer, R.W.: Solving differential equations in R: Package deSolve. Journal of Statistical Software 33 (2010). https://doi.org/10.18637/jss.v033.i09

  157. Stieha, C., Montovan, K., Castillo-Guajardo, D.: A field guide to programming: A tutorial for learning programming and population models. CODEE Journal 10, Article 2 (2014). https://doi.org/10.5642/codee.201410.01.02. https://scholarship.claremont.edu/codee/vol10/iss1/2/

  158. Stone, L., Olinky, R., Huppert, A.: Seasonal dynamics of recurrent epidemics. Nature 446(7135), 533–536 (2007). https://doi.org/10.1038/nature05638

    Article  MATH  Google Scholar 

  159. Strang, G.: Introduction to Linear Algebra, 5th edn. Wellesley – Cambridge Press (2016). https://math.mit.edu/~gs/linearalgebra/

  160. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2nd edn. Studies in Nonlinearity. Westview Press (2014)

    MATH  Google Scholar 

  161. Theussl, S., Schwendinger, F., Borchers, H.W.: CRAN Task View: Optimization and mathematical programming (2019). https://CRAN.R-project.org/view=Optimization. (Accessed: April 2019)

    Google Scholar 

  162. Vestergaard, C.L., Génois, M.: Temporal Gillespie Algorithm: Fast simulation of contagion processes on time-varying networks. PLOS Computational Biology 11(10), e1004, 579 (2015). https://doi.org/10.1371/journal.pcbi.1004579

    Article  Google Scholar 

  163. Vodopivec, A.: wxMaxima: A GUI for the computer algebra system maxima (2018). https://github.com/wxMaxima-developers/wxmaxima. (Accessed: April 2019)

  164. Wearing, H.J., Rohani, P., Keeling, M.J.: Appropriate models for the management of infectious diseases. PLOS Medicine 2(7) (2005). https://doi.org/10.1371/journal.pmed.0020174

    Article  Google Scholar 

  165. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, vol. 2, 2nd edn. Springer-Verlag New York (2003). https://doi.org/10.1007/b97481

  166. Wikibooks: LaTeX — Wikibooks, The Free Textbook Project (2019). https://en.wikibooks.org/w/index.php?title=LaTeX&oldid=3527944. (Accessed: 22 April 2019)

  167. Xia, J., Liu, Z., Yuan, R., Ruan, S.: The effects of harvesting and time delay on predator–prey systems with Holling type II functional response. SIAM Journal on Applied Mathematics 70(4), 1178–1200 (2009). https://doi.org/10.1137/080728512

    Article  MathSciNet  MATH  Google Scholar 

  168. Yoshida, T., Hairston, N.G., Ellner, S.P.: Evolutionary trade–off between defence against grazing and competitive ability in a simple unicellular alga, Chlorella vulgaris. Proceedings of the Royal Society of London. Series B: Biological Sciences 271(1551), 1947–1953 (2004). https://doi.org/10.1098/rspb.2004.2818

    Article  Google Scholar 

  169. Yoshida, T., Jones, L.E., Ellner, S.P., Fussmann, G.F., Hairston, N.G.: Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424(6946), 303–306 (2003). https://doi.org/10.1038/nature01767

    Article  Google Scholar 

Download references

Acknowledgements

My outlook on undergraduate research at the interface of biology, mathematics, and statistics has been shaped by many influential mentors and peers that I was lucky to have known as an undergraduate at the University of Southern Colorado (now Colorado State University-Pueblo), at the Mathematical and Theoretical Biology Summer Institute (MTBI), as a graduate student in the Center for Applied Mathematics at Cornell University, and as a postdoctoral researcher in the Aquatic Ecology Laboratory and the Mathematical Biosciences Institute at The Ohio State University. It has truly been a privilege to know and learn from such an outstanding collection of people. I thank the students in my courses for exposing me to a broad array of project topics that have further influenced my outlook on undergraduate research across the sciences. I thank my colleague and wife Dr. Deena Schmidt; my colleagues Michael Cortez, Marisa Eisenberg, Colin Grudzien, and Andrey Sarantsev; my students Amy Robards, Jace Gilbert, Adam Kirosingh, Narae Wadsworth, and Catalina Medina; and reviewers Andrew Brouwer and Kathryn Montovan for many helpful comments, criticisms, and suggestions that ultimately improved this chapter. Finally, I thank my children Alex (age 7), Ellie (age 3), and Nat (age 3) for their unyielding companionship and boundless energy, which were instrumental to my preparing this chapter over such an extended period of time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Hurtado .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 6 Getting Started Writing in LATE X and Programming in R

Installing the free software LATE X and R should be straightforward, but here are some installation tips for Microsoft Windows and Mac OS X users (Linux users can find similar installation instructions using the resources mentioned below). Readers are encouraged to ask other students and faculty at their institution about additional resources.

There are two pieces of software each, for LATE X and R, that should be installed: the basic LATE X and R software, and an enhanced user interface that facilitates learning for new users and helps established users with their day-to-day workflow (e.g., helpful menus, code autocompletion and highlighting, custom keyboard shortcuts, advanced document preparation capabilities, etc.). Educators will appreciate that both TeXstudio and R Studio have a consistent user interface across operating systems, making them ideal for group or classroom environments where students may be running a mix of operating systems.

If installing both LATE X and R (recommended), install the base software first (in either order) before installing TeXstudio and/or R Studio (in either order). More detailed instructions and resources are provided below.

1.2 6 Installing and Using LATE X

There are different implementations of LATE X available: MiKTeX is a popular Microsoft Windows option (http://miktex.org/), and TeX Live a popular Mac OS X option. TeX Live comes as part of a full 2 gigabyte installation called MacTeX (www.tug.org/mactex/; which includes the popular editors TeXstudio and TeXShop) or can be installed through a smaller 110 megabyte bundle BasicTeX (www.tug.org/mactex/morepackages.html). Configure LATE X to install packages “on the fly” without prompting you for permission. This can be done during (preferred) or after installation. Also download and install Ghostscript (www.tug.org/mactex/morepackages.html).

Next, install the TeXstudio editor (www.texstudio.org/), preferably after R is installed. Various settings can be changed after installation, including color themes, and configuring TeXstudio to compile a type of LATE X document that includes blocks of R code known as a Sweave or knitr document (use knitr).

For additional LATE X resources, see the author’s website (www.pauljhurtado.com/R/), the LaTeX wikibook [166], the AMS Short Math Guide for LATE X [42], and references and resources listed therein.

1.3 6 Installing and Using R

Download R from www.r-project.org/ and use the default installation process. Once R is installed (and, preferably once LATE X is installed), install R Studio from www.rstudio.com. By installing R Studio after LATE X, you will be able to create multiple document types to generate PDFs, including R Markdown documents and knitr documents. Helpful online resources include the “cheat sheets” on the R Studio website, introductory courses by DataCamp (www.datacamp.com) and Software Carpentry (www.software-carpentry.org), [157] for a gentle introduction to R and some applications to population modeling, and R resources on the author’s website (www.pauljhurtado.com/R/).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hurtado, P.J. (2020). Building New Models: Rethinking and Revising ODE Model Assumptions. In: Callender Highlander, H., Capaldi, A., Diaz Eaton, C. (eds) An Introduction to Undergraduate Research in Computational and Mathematical Biology. Foundations for Undergraduate Research in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-33645-5_1

Download citation

Publish with us

Policies and ethics