Skip to main content

The Role of Hormones in Exercise-Induced Muscle Hypertrophy

  • Chapter
  • First Online:
Endocrinology of Physical Activity and Sport

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Resistance exercise training leads to muscle hypertrophy; however the exact mechanisms involved in the hypertrophic process are still not fully understood to this day. Besides resistance training-induced mechanical stress, hormonal elevations triggered by resistance training seem to play important roles in the anabolic process via genomic and non-genomic activities. Nevertheless, studies with regard to the direct effects of resistance training-induced acute hormonal elevations on muscle growth led to contradictory findings. Indeed, several studies show direct correlations between acute hormonal elevations and muscle hypertrophy, while others deny such correlations. Even if direct effects of resistance training-induced acute elevations might not be the main driving factor for muscle hypertrophy, they are involved in many anabolic processes and therefore facilitate the hypertrophic mechanism. On the other hand, supraphysiological levels of hormones achieved via exogenous supplementation may create an anabolic and anti-catabolic environment leading to muscle hypertrophy going beyond the levels achievable with physiological hormonal levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013;43:179–94.

    Article  PubMed  Google Scholar 

  2. Burd NA, Andrews RJ, West DW, Little JP, Cochran AJ, Hector AJ, Cashaback JG, Gibala MJ, Potvin JR, Baker SK. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J Physiol. 2012;590:351–62.

    Article  PubMed  CAS  Google Scholar 

  3. Carpinelli RN. The size principle and a critical analysis of the unsubstantiated heavier-is-better recommendation for resistance training. J Exerc Sci Fit. 2008;6:67–86.

    Google Scholar 

  4. Schoenfeld B. The use of specialized training techniques to maximize muscle hypertrophy. Strength Cond J. 2011;33:60–5.

    Article  Google Scholar 

  5. Crowley MA, Matt KS. Hormonal regulation of skeletal muscle hypertrophy in rats: the testosterone to cortisol ratio. Eur J Appl Physiol Occup Physiol. 1996;73:66–72.

    Article  PubMed  CAS  Google Scholar 

  6. Sinha-Hikim I, Roth SM, Lee MI, Bhasin S. Testosterone-induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men. A J Physiol Endocrinol Metab. 2003;285:E197–205.

    Article  CAS  Google Scholar 

  7. Liu X-H, Wu Y, Yao S, Levine AC, Kirschenbaum A, Collier L, Bauman WA, Cardozo CP. Androgens up-regulate transcription of the Notch inhibitor Numb in C2C12 myoblasts via Wnt/β-catenin signaling to T cell factor elements in the Numb promoter. J Biol Chem. 2013;288:17990–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Rahman F, Christian HC. Non-classical actions of testosterone: an update. Trends Endocrinol Metab. 2007;18:371–8.

    Article  PubMed  CAS  Google Scholar 

  9. Estrada M, Espinosa A, Müller M, Jaimovich E. Testosterone stimulates intracellular calcium release and mitogen-activated protein kinases via a G protein-coupled receptor in skeletal muscle cells. Endocrinology. 2003;144:3586–97.

    Article  PubMed  CAS  Google Scholar 

  10. Hamdi M, Mutungi G. Dihydrotestosterone activates the MAPK pathway and modulates maximum isometric force through the EGF receptor in isolated intact mouse skeletal muscle fibres. J Physiol. 2010;588:511–25.

    Article  PubMed  CAS  Google Scholar 

  11. Mangine GT, Hoffman JR, Gonzalez AM, Townsend JR, Wells AJ, Jajtner AR, Beyer KS, Boone CH, Wang R, Miramonti AA. Exercise-induced hormone elevations are related to muscle growth. J Strength Cond Res. 2016;31(1):45–53.

    Article  Google Scholar 

  12. Athiainen JP, Pakarinen A, Alen M, Kraemer WJ, Häkkinen K. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol. 2003;89:555–63.

    Article  CAS  Google Scholar 

  13. McCall GE, Byrnes WC, Fleck SJ, Dickinson A, Kraemer WJ. Acute and chronic hormonal responses to resistance training designed to promote muscle hypertrophy. Can J Appl Physiol. 1999;24:96–107.

    Article  PubMed  CAS  Google Scholar 

  14. Rønnestad BR, Nygaard H, Raastad T. Physiological elevation of endogenous hormones results in superior strength training adaptation. Eur J Appl Physiol. 2011;111:2249–59.

    Article  PubMed  CAS  Google Scholar 

  15. West DWD, Burd NA, Tang JE, Moore DR, Staples AW, Holwerda AM, Baker SK, Phillips SM. Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors. J Appl Physiol. 2010;108:60–7.

    Article  PubMed  Google Scholar 

  16. West DWD, Kujbida GW, Moore DR, Atherton P, Burd NA, Padzik JP, De Lisio M, Tang JE, Parise G, Rennie MJ. Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. J Physiol. 2009;587:5239–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. West DWD, Phillips SM. Associations of exercise-induced hormone profiles and gains in strength and hypertrophy in a large cohort after weight training. Eur J Appl Physiol. 2012;112:2693–702.

    Article  PubMed  CAS  Google Scholar 

  18. Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35:339–61.

    Article  PubMed  Google Scholar 

  19. Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Häkkinen K. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol. 2003;89:555–63.

    Article  PubMed  CAS  Google Scholar 

  20. Kraemer WJ, Häkkinen K, Newton RU, Nindl BC, Volek JS, McCormick M, Gotshalk LA, Gordon SE, Fleck SJ, Campbell WW. Effects of heavy-resistance training on hormonal response patterns in younger vs. older men. J Appl Physiol. 1999;87:982–92.

    Article  PubMed  CAS  Google Scholar 

  21. Fink J, Kikuchi N, Nakazato K. Effects of rest intervals and training loads on metabolic stress and muscle hypertrophy. Clin Physiol Funct Imaging. 2018;38(2):261–8.

    Article  PubMed  Google Scholar 

  22. Kraemer WJ, Marchitelli L, Gordon SE, Harman E, Dziados JE, Mello R, Frykman P, McCurry D, Fleck SJ. Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol. 1990;69:1442–50.

    Article  PubMed  CAS  Google Scholar 

  23. Laurent MR, Hammond GL, Blokland M, Jardí F, Antonio L, Dubois V, Khalil R, Sterk SS, Gielen E, Decallonne B. Sex hormone-binding globulin regulation of androgen bioactivity in vivo: validation of the free hormone hypothesis. Sci Rep. 2016;6:35539.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Roberts CK, Croymans DM, Aziz N, Butch AW, Lee CC. Resistance training increases SHBG in overweight/obese, young men. Metabolism. 2013;62:725–33.

    Article  PubMed  CAS  Google Scholar 

  25. So B, Kim H-J, Kim J, Song W. Exercise-induced myokines in health and metabolic diseases. Integr Med Res. 2014;3:172–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Morton RW, Oikawa SY, Wavell CG, Mazara N, McGlory C, Quadrilatero J, Baechler BL, Baker SK, Phillips SM. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol. 2016;121(1):129–38. https://doi.org/10.1152/japplphysiol.00154.02016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Morton RW, Sato K, Gallaugher MP, Oikawa SY, McNicholas PD, Fujita S, Phillips SM. Muscle androgen receptor content but not systemic hormones is associated with resistance training-induced skeletal muscle hypertrophy in healthy, young men. Front Physiol. 2018;9:1373.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fink J, Schoenfeld B, Kikuchi N, Nakazato K. Acute and Long-term Responses to Different Rest Intervals in Low-load Resistance Training. International Journal of Sports Medicine. 2016a.

    Google Scholar 

  29. Fink J, Kikuchi N, Nakazato K. Effects of rest intervals and training loads on metabolic stress and muscle hypertrophy. Clinical Physiology and Functional Imaging. 2016b.

    Google Scholar 

  30. Mitchell CJ, Churchward-Venne TA, Bellamy L, Parise G, Baker SK, Phillips SM. Muscular and systemic correlates of resistance training-induced muscle hypertrophy. PloS one. 2013;8, e78636.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kraemer WJ, Ratamess NA, Nindl BJ. Highlighted topics: recovery from exercise: recovery responses of testosterone, growth hormone, and IGF-1 after resistance exercise. J Appl Physiol. 2016;122(3):549–58.

    Article  PubMed  CAS  Google Scholar 

  32. Goldberg AL, Etlinger JD, Goldspink DF, Jablecki C. Mechanism of work-induced hypertrophy of skeletal muscle. Med Sci Sports. 1975;7:185–98.

    PubMed  CAS  Google Scholar 

  33. Goodman CA. The role of mTORC1 in regulating protein synthesis and skeletal muscle mass in response to various mechanical stimuli. In: Reviews of Physiology, Biochemistry and Pharmacology, vol. 166. Cham: Springer; 2013. p. 43–95.

    Google Scholar 

  34. Sheffield-Moore M. Androgens and the control of skeletal muscle protein synthesis. Ann Med. 2000;32:181–6.

    Article  PubMed  CAS  Google Scholar 

  35. Ferrando AA, Tipton KD, Doyle D, Phillips SM, Cortiella J, Wolfe RR. Testosterone injection stimulates net protein synthesis but not tissue amino acid transport. Am J Physiol Endocrinol Metab. 1998;275:E864–71.

    Article  CAS  Google Scholar 

  36. Ferrando AA, Sheffield-Moore M, Paddon-Jones D, Wolfe RR, Urban RJ. Differential anabolic effects of testosterone and amino acid feeding in older men. J Clin Endocrinol Metabol. 2003;88:358–62.

    Article  CAS  Google Scholar 

  37. Ferrando AA, Sheffield-Moore M, Yeckel CW, Gilkison C, Jiang J, Achacosa A, Lieberman SA, Tipton K, Wolfe RR, Urban RJ. Testosterone administration to older men improves muscle function: molecular and physiological mechanisms. Am J Physiol Endocrinol Metab. 2002;282:E601–7.

    Article  PubMed  CAS  Google Scholar 

  38. von Maltzahn J, Chang NC, Bentzinger CF, Rudnicki MA. Wnt signaling in myogenesis. Trends Cell Biol. 2012;22:602–9.

    Article  CAS  Google Scholar 

  39. Mumford PW, Romero MA, Mao X, Mobley CB, Kephart WC, Haun CT, Roberson PA, Young KC, Martin JS, Yarrow JF. Cross-talk between androgen and Wnt signaling potentially contributes to age-related skeletal muscle atrophy in rats. J Appl Physiol. 2018;125:486.

    Article  PubMed  CAS  Google Scholar 

  40. Antonio J, Gonyea WJ. Skeletal muscle fiber hyperplasia. Med Sci Sports Exerc. 1993;25:1333–45.

    Article  PubMed  CAS  Google Scholar 

  41. Kahn S, Hryb D, Nakhla A, Romas N, Rosner W. Sex hormone-binding globulin is synthesized in target cells. J Endocrinol. 2002;175:113–20.

    Article  PubMed  CAS  Google Scholar 

  42. McGlory C, Phillips SM. Exercise and the regulation of skeletal muscle hypertrophy. In: Progress in molecular biology and translational science. Amsterdam: Elsevier; 2015. p. 153–73.

    Google Scholar 

  43. Fink J, Schoenfeld BJ, Nakazato K. The role of hormones in muscle hypertrophy. Phys Sportsmed. 2018;46(1):129–34.

    Article  PubMed  Google Scholar 

  44. Parkinson AB, Evans NA. Anabolic androgenic steroids: a survey of 500 users. Med Sci Sports Exerc. 2006;38:644–51.

    Article  PubMed  CAS  Google Scholar 

  45. Bhasin S, Storer TW, Berman N, Callegari C, Clevenger B, Phillips J, Bunnell TJ, Tricker R, Shirazi A, Casaburi R. The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med. 1996;335:1–7.

    Article  PubMed  CAS  Google Scholar 

  46. Donner DG, Beck BR, Bulmer AC, Lam AK, Du Toit EF. Improvements in body composition, cardiometabolic risk factors and insulin sensitivity with trenbolone in normogonadic rats. Steroids. 2015;94:60–9.

    Article  PubMed  CAS  Google Scholar 

  47. Bates P, Chew L, Millward D. Effects of the anabolic steroid stanozolol on growth and protein metabolism in the rat. J Endocrinol. 1987;114:373–81.

    Article  PubMed  CAS  Google Scholar 

  48. Johansen KL, Painter PL, Sakkas GK, Gordon P, Doyle J, Shubert T. Effects of resistance exercise training and nandrolone decanoate on body composition and muscle function among patients who receive hemodialysis: a randomized, controlled trial. J Am Soc Nephrol. 2006;17:2307–14.

    Article  PubMed  CAS  Google Scholar 

  49. Schiffer B, Daxenberger A, Meyer K, Meyer H. The fate of trenbolone acetate and melengestrol acetate after application as growth promoters in cattle: environmental studies. Environ Health Perspect. 2001;109:1145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Johnson BJ, Chung KY. Alterations in the physiology of growth of cattle with growth-enhancing compounds. Vet Clin N Am Food Anim Pract. 2007;23:321–32.

    Article  Google Scholar 

  51. Donner DG, Elliott GE, Beck BR, Bulmer AC, Lam AK, Headrick JP, Du Toit EF. Trenbolone improves cardiometabolic risk factors and myocardial tolerance to ischemia-reperfusion in male rats with testosterone-deficient metabolic syndrome. Endocrinology. 2015;157:368–81.

    Article  PubMed  CAS  Google Scholar 

  52. Brill KT, Weltman AL, Gentili A, Patrie JT, Fryburg DA, Hanks JB, Urban RJ, Veldhuis JD. Single and combined effects of growth hormone and testosterone administration on measures of body composition, physical performance, mood, sexual function, bone turnover, and muscle gene expression in healthy older men. J Clin Endocrinol Metabol. 2002;87:5649–57.

    Article  CAS  Google Scholar 

  53. Pacy PJ, Nair KS, Ford C, Halliday D. Failure of insulin infusion to stimulate fractional muscle protein synthesis in type I diabetic patients: anabolic effect of insulin and decreased proteolysis. Diabetes. 1989;38:618–24.

    Article  PubMed  CAS  Google Scholar 

  54. de Souza GL, Hallak J. Anabolic steroids and male infertility: a comprehensive review. BJU Int. 2011;108:1860–5.

    Article  PubMed  CAS  Google Scholar 

  55. Krauss D, Taub H, Lantinga L, Dunsky M, Kelly C. Risks of blood volume changes in hypogonadal men treated with testosterone enanthate for erectile impotence. J Urol. 1991;146:1566–70.

    Article  PubMed  CAS  Google Scholar 

  56. Brien AJ, Simon TL. The effects of red blood cell infusion on 10-km race time. JAMA. 1987;257:2761–5.

    Article  PubMed  CAS  Google Scholar 

  57. Hershberger L, Shipley EG, Meyer RK. Myotrophic activity of 19-nortestosterone and other steroids determined by modified levator ani muscle method.∗. Proc Soc Exp Biol Med. 1953;83:175–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius E. Fink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fink, J.E. (2020). The Role of Hormones in Exercise-Induced Muscle Hypertrophy. In: Hackney, A., Constantini, N. (eds) Endocrinology of Physical Activity and Sport. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-030-33376-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33376-8_21

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-33375-1

  • Online ISBN: 978-3-030-33376-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics