Skip to main content

An Introduction to Circadian Endocrine Physiology: Implications for Exercise and Sports Performance

  • Chapter
  • First Online:
Endocrinology of Physical Activity and Sport

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Circadian rhythms have a period of approximately 24 h, persist when constant dim light conditions exist, and are driven by the internal master biological clock, located in the suprachiasmatic nuclei (SCN) of the hypothalamus. While these rhythms are endogenous, they are attuned to external time cues called zeitgebers (time givers), with the daily light/dark cycle being the most important. Peripheral oscillators, present in most organs in the body, have an important role in the general rhythmicity of the organism, and they can be aligned or misaligned with the SCN and the environmental zeitgebers such as light, activity, and feeding. Human physiology (including endocrine, immune, and metabolic functions) and performance exhibit circadian variations. Major misalignment of the internal clock with the external environment, as occurs in jet lag and shift work, can adversely affect physiology and performance. Timed interventions, such as light exposure or avoidance, can help mitigate circadian adversity and improve the quality of exercise training, competing, and recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haus E. Chronobiology in the endocrine system. Adv Drug Deliv Rev. 2007;59(9–10):985–1014.

    Article  CAS  PubMed  Google Scholar 

  2. Stiller JW, Postolache TT. Sleep-wake and other biological rhythms: functional neuroanatomy. Clin Sports Med. 2005;24(2):205–35, vii.

    Article  PubMed  Google Scholar 

  3. Aschoff J. Exogenous and endogenous components in circadian rhythms. Cold Spring Harb Symp Quant Biol. 1960;25:11–28.

    Article  CAS  PubMed  Google Scholar 

  4. Stenvers DJ, Scheer FAJL, Schrauwen P, la Fleur SE, Kalsbeek A. Circadian clocks and insulin resistance. Nat Rev Endocrinol. 2019;15(2):75–89.

    Article  PubMed  CAS  Google Scholar 

  5. Steeves TD, King DP, Zhao Y, Sangoram AM, Du F, Bowcock AM, et al. Molecular cloning and characterization of the human CLOCK gene: expression in the suprachiasmatic nuclei. Genomics. 1999;57(2):189–200.

    Article  CAS  PubMed  Google Scholar 

  6. Takahashi JS, Hong HK, Ko CH, McDearmon EL. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet. 2008;9(10):764–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arendt J. Shift work: coping with the biological clock. Occup Med (Lond). 2010;60(1):10–20.

    Article  Google Scholar 

  8. Johnson RF, Moore RY, Morin LP. Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract. Brain Res. 1988;460(2):297–313.

    Article  CAS  PubMed  Google Scholar 

  9. Freedman MS, Lucas RJ, Soni B, von Schantz M, Munoz M, David-Gray Z, et al. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science. 1999;284(5413):502–4.

    Article  CAS  PubMed  Google Scholar 

  10. Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, Heller HC, et al. Role of melanopsin in circadian responses to light. Science. 2002;298(5601):2211–3.

    Article  CAS  PubMed  Google Scholar 

  11. Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ, Hogenesch JB, et al. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science. 2002;298(5601):2213–6.

    Article  CAS  PubMed  Google Scholar 

  12. Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science. 2003;299(5604):245–7.

    Article  CAS  PubMed  Google Scholar 

  13. Kalsbeek A, Teclemariam-Mesbah R, Pevet P. Efferent projections of the suprachiasmatic nucleus in the golden hamster (Mesocricetus auratus). J Comp Neurol. 1993;332(3):293–314.

    Article  CAS  PubMed  Google Scholar 

  14. Wehr TA, Duncan WC Jr, Sher L, Aeschbach D, Schwartz PJ, Turner EH, et al. A circadian signal of change of season in patients with seasonal affective disorder. Arch Gen Psychiatry. 2001;58(12):1108–14.

    Article  CAS  PubMed  Google Scholar 

  15. King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, et al. Positional cloning of the mouse circadian clock gene. Cell. 1997;89(4):641–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science. 1998;280(5369):1564–9.

    Article  CAS  PubMed  Google Scholar 

  17. Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 1999;98(2):193–205.

    Article  CAS  PubMed  Google Scholar 

  18. Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, et al. Interacting molecular loops in the mammalian circadian clock. Science. 2000;288(5468):1013–9.

    Article  CAS  PubMed  Google Scholar 

  19. Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM. Posttranslational mechanisms regulate the mammalian circadian clock. Cell. 2001;107(7):855–67.

    Article  CAS  PubMed  Google Scholar 

  20. Gallego M, Virshup DM. Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol. 2007;8(2):139–48.

    Article  CAS  PubMed  Google Scholar 

  21. Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2016;18:164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Preussner M, Heyd F. Post-transcriptional control of the mammalian circadian clock: implications for health and disease. Pflugers Arch. 2016;468(6):983–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science. 2001;291(5506):1040–3.

    Article  CAS  PubMed  Google Scholar 

  24. Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, et al. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature. 2005;434(7033):640–4.

    Article  CAS  PubMed  Google Scholar 

  25. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002;110(2):251–60.

    Article  CAS  PubMed  Google Scholar 

  26. Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron. 2004;43(4):527–37.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Fang B, Emmett MJ, Damle M, Sun Z, Feng D, et al. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science. 2015;348(6242):1488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Novak B, Tyson JJ. Design principles of biochemical oscillators. Nat Rev Mol Cell Biol. 2008;9(12):981–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mitsui S, Yamaguchi S, Matsuo T, Ishida Y, Okamura H. Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev. 2001;15(8):995–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gachon F, Fonjallaz P, Damiola F, Gos P, Kodama T, Zakany J, et al. The loss of circadian PAR bZip transcription factors results in epilepsy. Genes Dev. 2004;18(12):1397–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, et al. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet. 2005;37(2):187–92.

    Article  CAS  PubMed  Google Scholar 

  32. Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell. 2002;109(3):307–20.

    Article  CAS  PubMed  Google Scholar 

  33. Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, et al. Extensive and divergent circadian gene expression in liver and heart. Nature. 2002;417(6884):78–83.

    Article  CAS  PubMed  Google Scholar 

  34. Gamble KL, Berry R, Frank SJ, Young ME. Circadian clock control of endocrine factors. Nat Rev Endocrinol. 2014;10:466.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Avram AM, Jaffe CA, Symons KV, Barkan AL. Endogenous circulating ghrelin does not mediate growth hormone rhythmicity or response to fasting. J Clin Endocrinol Metab. 2005;90(5):2982–7.

    Article  CAS  PubMed  Google Scholar 

  36. Russell W, Harrison RF, Smith N, Darzy K, Shalet S, Weetman AP, et al. Free triiodothyronine has a distinct circadian rhythm that is delayed but parallels thyrotropin levels. J Clin Endocrinol Metab. 2008;93(6):2300–6.

    Article  CAS  PubMed  Google Scholar 

  37. Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev. 2000;80(4):1523–631.

    Article  CAS  PubMed  Google Scholar 

  38. Walton MJ, Anderson RA, Kicman AT, Elton RA, Ossowska K. Baird DT. A diurnal variation in testicular hormone production is maintained following gonadotrophin suppression in normal men. Clin Endocrinol. 2007;66(1):123–9.

    CAS  Google Scholar 

  39. Carroll T, Raff H, Findling JW. Late-night salivary cortisol measurement in the diagnosis of Cushing’s syndrome. Nat Clin Pract Endocrinol Metab. 2008;4(6):344–50.

    Article  CAS  PubMed  Google Scholar 

  40. Goel N, Stunkard AJ, Rogers NL, Van Dongen HP, Allison KC, O’Reardon JP, et al. Circadian rhythm profiles in women with night eating syndrome. J Biol Rhythm. 2009;24(1):85–94.

    Article  CAS  Google Scholar 

  41. Scheer FA, Chan JL, Fargnoli J, Chamberland J, Arampatzi K, Shea SA, et al. Day/night variations of high-molecular-weight adiponectin and lipocalin-2 in healthy men studied under fed and fasted conditions. Diabetologia. 2010;53(11):2401–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dickmeis T. Glucocorticoids and the circadian clock. J Endocrinol. 2009;200(1):3–22.

    Article  CAS  PubMed  Google Scholar 

  43. Bolli GB, De Feo P, De Cosmo S, Perriello G, Ventura MM, Calcinaro F, et al. Demonstration of a dawn phenomenon in normal human volunteers. Diabetes. 1984;33(12):1150–3.

    Article  CAS  PubMed  Google Scholar 

  44. Bolli GB, Gerich JE. The “dawn phenomenon”--a common occurrence in both non-insulin-dependent and insulin-dependent diabetes mellitus. N Engl J Med. 1984;310(12):746–50.

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt MI, Lin QX, Gwynne JT, Jacobs S. Fasting early morning rise in peripheral insulin: evidence of the dawn phenomenon in nondiabetes. Diabetes Care. 1984;7(1):32–5.

    Article  CAS  PubMed  Google Scholar 

  46. Campbell PJ, Bolli GB, Cryer PE, Gerich JE. Pathogenesis of the dawn phenomenon in patients with insulin-dependent diabetes mellitus. Accelerated glucose production and impaired glucose utilization due to nocturnal surges in growth hormone secretion. N Engl J Med. 1985;312(23):1473–9.

    Article  CAS  PubMed  Google Scholar 

  47. Monnier L, Colette C, Dejager S, Owens D. Magnitude of the dawn phenomenon and its impact on the overall glucose exposure in type 2 diabetes: is this of concern? Diabetes Care. 2013;36(12):4057–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR. Melatonin--a pleiotropic, orchestrating regulator molecule. Prog Neurobiol. 2011;93(3):350–84.

    Article  CAS  PubMed  Google Scholar 

  49. Gardi J, Obal FJ, Fang J, Zhang J, Krueger JM. Diurnal variations and sleep deprivation-induced changes in rat hypothalamic GHRH and somatostatin contents. Am J Phys. 1999;277(5):R1339–44.

    CAS  Google Scholar 

  50. Dimaraki EV, Jaffe CA, Bowers CY, Marbach P, Barkan AL. Pulsatile and nocturnal growth hormone secretions in men do not require periodic declines of somatostatin. Am J Physiol Endocrinol Metab. 2003;285(1):E163–70.

    Article  CAS  PubMed  Google Scholar 

  51. Takahashi Y. Essential roles of growth hormone (GH) and insulin-like growth factor-I (IGF-I) in the liver. Endocr J. 2012;59(11):955–62.

    Article  CAS  PubMed  Google Scholar 

  52. Jaffe CA, Ocampo-Lim B, Guo W, Krueger K, Sugahara I, DeMott-Friberg R, et al. Regulatory mechanisms of growth hormone secretion are sexually dimorphic. J Clin Invest. 1998;102(1):153–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Villadolid MC, Takano K, Hizuka N, Asakawa K, Sukegawa I, Horikawa R, et al. Twenty-four hour plasma GH, FSH and LH profiles in patients with Turner’s syndrome. Endocrinol Jpn. 1988;35(1):71–81.

    Article  CAS  PubMed  Google Scholar 

  54. Goji K. Pulsatile characteristics of spontaneous growth hormone (GH) concentration profiles in boys evaluated by an ultrasensitive immunoradiometric assay: evidence for ultradian periodicity of GH secretion. J Clin Endocrinol Metab. 1993;76(3):667–70.

    CAS  PubMed  Google Scholar 

  55. Selmaoui B, Touitou Y. Reproducibility of the circadian rhythms of serum cortisol and melatonin in healthy subjects: a study of three different 24-h cycles over six weeks. Life Sci. 2003;73(26):3339–49.

    Article  CAS  PubMed  Google Scholar 

  56. Kalsbeek A, van Heerikhuize JJ, Wortel J, Buijs RM. A diurnal rhythm of stimulatory input to the hypothalamo-pituitary-adrenal system as revealed by timed intrahypothalamic administration of the vasopressin V1 antagonist. J Neurosci. 1996;16(17):5555–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roky R, Obal F Jr, Valatx JL, Bredow S, Fang J, Pagano LP, et al. Prolactin and rapid eye movement sleep regulation. Sleep. 1995;18(7):536–42.

    CAS  PubMed  Google Scholar 

  58. Hackney AC, Ness RJ, Schrieber A. Effects of endurance exercise on nocturnal hormone concentrations in males. Chronobiol Int. 1989;6(4):341–6.

    Article  CAS  PubMed  Google Scholar 

  59. Gupta SK, Lindemulder EA, Sathyan G. Modeling of circadian testosterone in healthy men and hypogonadal men. J Clin Pharmacol. 2000;40(7):731–8.

    Article  CAS  PubMed  Google Scholar 

  60. McMurray RG, Eubank TK, Hackney AC. Nocturnal hormonal responses to resistance exercise. Eur J Appl Physiol Occup Physiol. 1995;72(1):121–6.

    Article  CAS  PubMed  Google Scholar 

  61. Luboshitzky R, Zabari Z, Shen-Orr Z, Herer P, Lavie P. Disruption of the nocturnal testosterone rhythm by sleep fragmentation in normal men. J Clin Endocrinol Metab. 2001;86(3):1134–9.

    Article  CAS  PubMed  Google Scholar 

  62. van Raalte DH, Diamant M. Steroid diabetes: from mechanism to treatment? Neth J Med. 2014;72(2):62–72.

    PubMed  Google Scholar 

  63. Ramracheya RD, Muller DS, Squires PE, Brereton H, Sugden D, Huang GC, et al. Function and expression of melatonin receptors on human pancreatic islets. J Pineal Res. 2008;44(3):273–9.

    Article  CAS  PubMed  Google Scholar 

  64. Tuomi T, Nagorny CLF, Singh P, Bennet H, Yu Q, Alenkvist I, et al. Increased melatonin signaling is a risk factor for type 2 diabetes. Cell Metab. 2016;23(6):1067–77.

    Article  CAS  PubMed  Google Scholar 

  65. Moller N, Jorgensen JO. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev. 2009;30(2):152–77.

    Article  PubMed  CAS  Google Scholar 

  66. Morris CJ, Aeschbach D, Scheer FA. Circadian system, sleep and endocrinology. Mol Cell Endocrinol. 2012;349(1):91–104.

    Article  CAS  PubMed  Google Scholar 

  67. La Fleur SE, Kalsbeek A, Wortel J, Fekkes ML, Buijs RM. A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus. Diabetes. 2001;50(6):1237–43.

    Article  PubMed  Google Scholar 

  68. Coomans CP, van den Berg SA, Lucassen EA, Houben T, Pronk AC, van der Spek RD, et al. The suprachiasmatic nucleus controls circadian energy metabolism and hepatic insulin sensitivity. Diabetes. 2013;62(4):1102–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Begg DP, Woods SC. Interactions between the central nervous system and pancreatic islet secretions: a historical perspective. Adv Physiol Educ. 2013;37(1):53–60.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414(6865):799–806.

    Article  CAS  PubMed  Google Scholar 

  71. Verrillo A, De Teresa A, Martino C, Di Chiara G, Pinto M, Verrillo L, et al. Differential roles of splanchnic and peripheral tissues in determining diurnal fluctuation of glucose tolerance. Am J Phys. 1989;257(4 Pt 1):E459–65.

    CAS  Google Scholar 

  72. van Moorsel D, Hansen J, Havekes B, Scheer F, Jorgensen JA, Hoeks J, et al. Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity. Mol Metab. 2016;5(8):635–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Hussain MM, Pan X. Circadian regulation of macronutrient absorption. J Biol Rhythm. 2015;30(6):459–69.

    Article  CAS  Google Scholar 

  74. Scheving LA. Biological clocks and the digestive system. Gastroenterology. 2000;119(2):536–49.

    Article  CAS  PubMed  Google Scholar 

  75. Hoogerwerf WA. Role of clock genes in gastrointestinal motility. Am J Physiol Gastrointest Liver Physiol. 2010;299(3):G549–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, Smith AG, et al. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol. 2002;12(7):540–50.

    Article  CAS  PubMed  Google Scholar 

  77. Robles MS, Cox J, Mann M. In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism. PLoS Genet. 2014;10(1):e1004047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Mauvoisin D, Wang J, Jouffe C, Martin E, Atger F, Waridel P, et al. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. Proc Natl Acad Sci U S A. 2014;111(1):167–72.

    Article  CAS  PubMed  Google Scholar 

  79. Gooley JJ, Chua EC. Diurnal regulation of lipid metabolism and applications of circadian lipidomics. J Genet Genomics. 2014;41(5):231–50.

    Article  CAS  PubMed  Google Scholar 

  80. Abbondante S, Eckel-Mahan KL, Ceglia NJ, Baldi P, Sassone-Corsi P. Comparative circadian metabolomics reveal differential effects of nutritional challenge in the serum and liver. J Biol Chem. 2016;291(6):2812–28.

    Article  CAS  PubMed  Google Scholar 

  81. Krishnaiah SY, Wu G, Altman BJ, Growe J, Rhoades SD, Coldren F, et al. Clock regulation of metabolites reveals coupling between transcription and metabolism. Cell Metab. 2017;25(4):961–74.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A. 2008;105(39):15172–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2004;2(11):e377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Su Y, Foppen E, Zhang Z, Fliers E, Kalsbeek A. Effects of 6-meals-a-day feeding and 6-meals-a-day feeding combined with adrenalectomy on daily gene expression rhythms in rat epididymal white adipose tissue. Genes Cells. 2016;21(1):6–24.

    Article  CAS  PubMed  Google Scholar 

  85. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. Entrainment of the circadian clock in the liver by feeding. Science. 2001;291(5503):490–3.

    Article  CAS  PubMed  Google Scholar 

  86. Hansen J, Timmers S, Moonen-Kornips E, Duez H, Staels B, Hesselink MK, et al. Synchronized human skeletal myotubes of lean, obese and type 2 diabetic patients maintain circadian oscillation of clock genes. Sci Rep. 2016;6:35047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Perrin L, Loizides-Mangold U, Skarupelova S, Pulimeno P, Chanon S, Robert M, et al. Human skeletal myotubes display a cell-autonomous circadian clock implicated in basal myokine secretion. Mol Metab. 2015;4(11):834–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Guo H, Brewer JM, Lehman MN, Bittman EL. Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker. J Neurosci. 2006;26(24):6406–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yamanaka Y, Honma S, Honma K. Scheduled exposures to a novel environment with a running-wheel differentially accelerate re-entrainment of mice peripheral clocks to new light-dark cycles. Genes Cells. 2008;13(5):497–507.

    Article  CAS  PubMed  Google Scholar 

  90. Wolff G, Esser KA. Scheduled exercise phase shifts the circadian clock in skeletal muscle. Med Sci Sports Exerc. 2012;44(9):1663–70.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Reznick J, Preston E, Wilks DL, Beale SM, Turner N, Cooney GJ. Altered feeding differentially regulates circadian rhythms and energy metabolism in liver and muscle of rats. Biochim Biophys Acta. 2013;1832(1):228–38.

    Article  CAS  PubMed  Google Scholar 

  92. Opperhuizen AL, Wang D, Foppen E, Jansen R, Boudzovitch-Surovtseva O, de Vries J, et al. Feeding during the resting phase causes profound changes in physiology and desynchronization between liver and muscle rhythms of rats. Eur J Neurosci. 2016;44(10):2795–806.

    Article  PubMed  Google Scholar 

  93. Kolbe I, Husse J, Salinas G, Lingner T, Astiz M, Oster H. The SCN clock governs circadian transcription rhythms in murine epididymal white adipose tissue. J Biol Rhythm. 2016;31(6):577–87.

    Article  CAS  Google Scholar 

  94. Wehrens SMT, Christou S, Isherwood C, Middleton B, Gibbs MA, Archer SN, et al. Meal timing regulates the human circadian system. Curr Biol. 2017;27(12):1768–75.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Feneberg R, Lemmer B. Circadian rhythm of glucose uptake in cultures of skeletal muscle cells and adipocytes in Wistar-Kyoto, Wistar, Goto-Kakizaki, and spontaneously hypertensive rats. Chronobiol Int. 2004;21(4–5):521–38.

    Article  CAS  PubMed  Google Scholar 

  96. Carrasco-Benso MP, Rivero-Gutierrez B, Lopez-Minguez J, Anzola A, Diez-Noguera A, Madrid JA, et al. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity. FASEB J. 2016;30(9):3117–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Stenvers DJ, van Dorp R, Foppen E, Mendoza J, Opperhuizen AL, Fliers E, et al. Dim light at night disturbs the daily sleep-wake cycle in the rat. Sci Rep. 2016;6:35662.

    Article  PubMed  CAS  Google Scholar 

  98. Fonken LK, Nelson RJ. The effects of light at night on circadian clocks and metabolism. Endocr Rev. 2014;35(4):648–70.

    Article  CAS  PubMed  Google Scholar 

  99. Fonken LK, Workman JL, Walton JC, Weil ZM, Morris JS, Haim A, et al. Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci U S A. 2010;107(43):18664–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Obayashi K, Saeki K, Iwamoto J, Okamoto N, Tomioka K, Nezu S, et al. Exposure to light at night, nocturnal urinary melatonin excretion, and obesity/dyslipidemia in the elderly: a cross-sectional analysis of the HEIJO-KYO study. J Clin Endocrinol Metab. 2013;98(1):337–44.

    Article  CAS  PubMed  Google Scholar 

  101. McFadden E, Jones ME, Schoemaker MJ, Ashworth A, Swerdlow AJ. The relationship between obesity and exposure to light at night: cross-sectional analyses of over 100,000 women in the Breakthrough Generations Study. Am J Epidemiol. 2014;180(3):245–50.

    Article  PubMed  Google Scholar 

  102. Obayashi K, Saeki K, Iwamoto J, Ikada Y, Kurumatani N. Independent associations of exposure to evening light and nocturnal urinary melatonin excretion with diabetes in the elderly. Chronobiol Int. 2014;31(3):394–400.

    Article  CAS  PubMed  Google Scholar 

  103. Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A. 2009;106(11):4453–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nguyen J, Wright KP Jr. Influence of weeks of circadian misalignment on leptin levels. Nat Sci Sleep. 2010;2:9–18.

    PubMed  Google Scholar 

  105. Archer SN, Laing EE, Moller-Levet CS, van der Veen DR, Bucca G, Lazar AS, et al. Mistimed sleep disrupts circadian regulation of the human transcriptome. Proc Natl Acad Sci U S A. 2014;111(6):E682–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Leproult R, Holmback U, Van Cauter E. Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. Diabetes. 2014;63(6):1860–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Weibel L, Spiegel K, Gronfier C, Follenius M, Brandenberger G. Twenty-four-hour melatonin and core body temperature rhythms: their adaptation in night workers. Am J Phys. 1997;272(3 Pt 2):R948–54.

    CAS  Google Scholar 

  108. Boivin DB, James FO. Circadian adaptation to night-shift work by judicious light and darkness exposure. J Biol Rhythm. 2002;17(6):556–67.

    Article  Google Scholar 

  109. Hennig J, Kieferdorf P, Moritz C, Huwe S, Netter P. Changes in cortisol secretion during shiftwork: implications for tolerance to shiftwork? Ergonomics. 1998;41(5):610–21.

    Article  CAS  PubMed  Google Scholar 

  110. Pietroiusti A, Neri A, Somma G, Coppeta L, Iavicoli I, Bergamaschi A, et al. Incidence of metabolic syndrome among night-shift healthcare workers. Occup Environ Med. 2010;67(1):54–7.

    Article  CAS  PubMed  Google Scholar 

  111. Lund J, Arendt J, Hampton SM, English J, Morgan LM. Postprandial hormone and metabolic responses amongst shift workers in Antarctica. J Endocrinol. 2001;171(3):557–64.

    Article  CAS  PubMed  Google Scholar 

  112. Boivin DB, Tremblay GM, James FO. Working on atypical schedules. Sleep Med. 2007;8(6):578–89.

    Article  PubMed  Google Scholar 

  113. Foster RG, Wulff K. The rhythm of rest and excess. Nat Rev Neurosci. 2005;6(5):407–14.

    Article  CAS  PubMed  Google Scholar 

  114. Knutsson A, Akerstedt T, Jonsson BG, Orth-Gomer K. Increased risk of ischaemic heart disease in shift workers. Lancet. 1986;2(8498):89–92.

    Article  CAS  PubMed  Google Scholar 

  115. Kroenke CH, Spiegelman D, Manson J, Schernhammer ES, Colditz GA, Kawachi I. Work characteristics and incidence of type 2 diabetes in women. Am J Epidemiol. 2007;165(2):175–83.

    Article  PubMed  Google Scholar 

  116. Ando H, Takamura T, Matsuzawa-Nagata N, Shima KR, Eto T, Misu H, et al. Clock gene expression in peripheral leucocytes of patients with type 2 diabetes. Diabetologia. 2009;52(2):329–35.

    Article  CAS  PubMed  Google Scholar 

  117. Boden G, Chen X, Urbain JL. Evidence for a circadian rhythm of insulin sensitivity in patients with NIDDM caused by cyclic changes in hepatic glucose production. Diabetes. 1996;45(8):1044–50.

    Article  CAS  PubMed  Google Scholar 

  118. Boden G, Chen X, Polansky M. Disruption of circadian insulin secretion is associated with reduced glucose uptake in first-degree relatives of patients with type 2 diabetes. Diabetes. 1999;48(11):2182–8.

    Article  CAS  PubMed  Google Scholar 

  119. Sans-Fuentes MA, Diez-Noguera A, Cambras T. Light responses of the circadian system in leptin deficient mice. Physiol Behav. 2010;99(4):487–94.

    Article  CAS  PubMed  Google Scholar 

  120. Danguir J. Sleep patterns in the genetically obese Zucker rat: effect of acarbose treatment. Am J Phys. 1989;256(1 Pt 2):R281–3.

    CAS  Google Scholar 

  121. Megirian D, Dmochowski J, Farkas GA. Mechanism controlling sleep organization of the obese Zucker rats. J Appl Physiol (1985). 1998;84(1):253–6.

    Article  CAS  Google Scholar 

  122. Kudo T, Akiyama M, Kuriyama K, Sudo M, Moriya T, Shibata S. Night-time restricted feeding normalises clock genes and Pai-1 gene expression in the db/db mouse liver. Diabetologia. 2004;47(8):1425–36.

    Article  CAS  PubMed  Google Scholar 

  123. Laposky AD, Shelton J, Bass J, Dugovic C, Perrino N, Turek FW. Altered sleep regulation in leptin-deficient mice. Am J Physiol Regul Integr Comp Physiol. 2006;290(4):R894–903.

    Article  CAS  PubMed  Google Scholar 

  124. Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 2007;6(5):414–21.

    Article  CAS  PubMed  Google Scholar 

  125. Pendergast JS, Branecky KL, Yang W, Ellacott KL, Niswender KD, Yamazaki S. High-fat diet acutely affects circadian organisation and eating behavior. Eur J Neurosci. 2013;37(8):1350–6.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14(23):2950–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Minami Y, Horikawa K, Akiyama M, Shibata S. Restricted feeding induces daily expression of clock genes and Pai-1 mRNA in the heart of clock mutant mice. FEBS Lett. 2002;526(1–3):115–8.

    Article  CAS  PubMed  Google Scholar 

  128. Bartol-Munier I, Gourmelen S, Pevet P, Challet E. Combined effects of high-fat feeding and circadian desynchronization. Int J Obes. 2006;30(1):60–7.

    Article  CAS  Google Scholar 

  129. Bray MS, Tsai JY, Villegas-Montoya C, Boland BB, Blasier Z, Egbejimi O, et al. Time-of-day-dependent dietary fat consumption influences multiple cardiometabolic syndrome parameters in mice. Int J Obes. 2010;34(11):1589–98.

    Article  CAS  Google Scholar 

  130. Bray MS, Ratcliffe WF, Grenett MH, Brewer RA, Gamble KL, Young ME. Quantitative analysis of light-phase restricted feeding reveals metabolic dyssynchrony in mice. Int J Obes. 2013;37(6):843–52.

    Article  CAS  Google Scholar 

  131. Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW. Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring). 2009;17(11):2100–2.

    Article  Google Scholar 

  132. Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15(6):848–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Stunkard AJ, Allison KC. Two forms of disordered eating in obesity: binge eating and night eating. Int J Obes Relat Metab Disord. 2003;27(1):1–12.

    Article  PubMed  Google Scholar 

  134. Qin LQ, Li J, Wang Y, Wang J, Xu JY, Kaneko T. The effects of nocturnal life on endocrine circadian patterns in healthy adults. Life Sci. 2003;73(19):2467–75.

    Article  CAS  PubMed  Google Scholar 

  135. Gill S, Panda S. A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab. 2015;22(5):789–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 2018;27(6):1212–21.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Scheiermann C, Kunisaki Y, Frenette PS. Circadian control of the immune system. Nat Rev Immunol. 2013;13:190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Haus E, Smolensky MH. Biologic rhythms in the immune system. Chronobiol Int. 1999;16(5):581–622.

    Article  CAS  PubMed  Google Scholar 

  139. Haus E, Lakatua DJ, Swoyer J, Sackett-Lundeen L. Chronobiology in hematology and immunology. Am J Anat. 1983;168(4):467–517.

    Article  CAS  PubMed  Google Scholar 

  140. Dimitrov S, Benedict C, Heutling D, Westermann J, Born J, Lange T. Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood. 2009;113(21):5134–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk HD, et al. A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci U S A. 2009;106(50):21407–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Boivin DB, James FO, Wu A, Cho-Park PF, Xiong H, Sun ZS. Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood. 2003;102(12):4143–5.

    Article  CAS  PubMed  Google Scholar 

  143. Bollinger T, Leutz A, Leliavski A, Skrum L, Kovac J, Bonacina L, et al. Circadian clocks in mouse and human CD4+ T cells. PLoS One. 2011;6(12):e29801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–49.

    Article  CAS  PubMed  Google Scholar 

  145. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2000;52(4):595–638.

    CAS  PubMed  Google Scholar 

  146. Coller BS. Leukocytosis and ischemic vascular disease morbidity and mortality: is it time to intervene? Arterioscler Thromb Vasc Biol. 2005;25(4):658–70.

    Article  CAS  PubMed  Google Scholar 

  147. Suarez-Barrientos A, Lopez-Romero P, Vivas D, Castro-Ferreira F, Nunez-Gil I, Franco E, et al. Circadian variations of infarct size in acute myocardial infarction. Heart. 2011;97(12):970–6.

    Article  PubMed  Google Scholar 

  148. Carlson DE, Chiu WC. The absence of circadian cues during recovery from sepsis modifies pituitary-adrenocortical function and impairs survival. Shock. 2008;29(1):127–32.

    Article  CAS  PubMed  Google Scholar 

  149. Duffy JF, Dijk DJ. Getting through to circadian oscillators: why use constant routines? J Biol Rhythm. 2002;17(1):4–13.

    Article  Google Scholar 

  150. Blatter K, Cajochen C. Circadian rhythms in cognitive performance: methodological constraints, protocols, theoretical underpinnings. Physiol Behav. 2007;90(2–3):196–208.

    Article  CAS  PubMed  Google Scholar 

  151. Brown EN, Czeisler CA. The statistical analysis of circadian phase and amplitude in constant-routine core-temperature data. J Biol Rhythm. 1992;7(3):177–202.

    Article  CAS  Google Scholar 

  152. Blatter K, Graw P, Munch M, Knoblauch V, Wirz-Justice A, Cajochen C. Gender and age differences in psychomotor vigilance performance under differential sleep pressure conditions. Behav Brain Res. 2006;168(2):312–7.

    Article  PubMed  Google Scholar 

  153. Krauchi K, Cajochen C, Wirz-Justice A. A relationship between heat loss and sleepiness: effects of postural change and melatonin administration. J Appl Physiol (1985). 1997;83(1):134–9.

    Article  CAS  Google Scholar 

  154. Koorengevel KM, Beersma DG, den Boer JA, van den Hoofdakker RH. A forced desynchrony study of circadian pacemaker characteristics in seasonal affective disorder. J Biol Rhythm. 2002;17(5):463–75.

    Article  Google Scholar 

  155. Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW, et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science. 1999;284(5423):2177–81.

    Article  CAS  PubMed  Google Scholar 

  156. Wyatt JK, Cecco AR-D, Czeisler CA, Dijk D-J. Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day. Am J Phys Regul Integr Comp Phys. 1999;277(4):R1152–R63.

    CAS  Google Scholar 

  157. Krauchi K. How is the circadian rhythm of core body temperature regulated? Clin Auton Res. 2002;12(3):147–9.

    Article  PubMed  Google Scholar 

  158. Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP. Light suppresses melatonin secretion in humans. Science. 1980;210(4475):1267–9.

    Article  CAS  PubMed  Google Scholar 

  159. Leibenluft E, Feldman-Naim S, Turner EH, Schwartz PJ, Wehr TA. Salivary and plasma measures of dim light melatonin onset (DLMO) in patients with rapid cycling bipolar disorder. Biol Psychiatry. 1996;40(8):731–5.

    Article  CAS  PubMed  Google Scholar 

  160. Pandi-Perumal SR, Smits M, Spence W, Srinivasan V, Cardinali DP, Lowe AD, et al. Dim light melatonin onset (DLMO): a tool for the analysis of circadian phase in human sleep and chronobiological disorders. Prog Neuro-Psychopharmacol Biol Psychiatry. 2007;31(1):1–11.

    Article  CAS  Google Scholar 

  161. Hofstra WA, de Weerd AW. How to assess circadian rhythm in humans: a review of literature. Epilepsy Behav. 2008;13(3):438–44.

    Article  PubMed  Google Scholar 

  162. Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol. 1976;4(2):97–110.

    CAS  PubMed  Google Scholar 

  163. Postolache TT, Hung TM, Rosenthal RN, Soriano JJ, Montes F, Stiller JW. Sports chronobiology consultation: from the lab to the arena. Clin Sports Med. 2005;24(2):415–56, xiv.

    Article  PubMed  Google Scholar 

  164. Katzenberg D, Young T, Finn L, Lin L, King DP, Takahashi JS, et al. A CLOCK polymorphism associated with human diurnal preference. Sleep. 1998;21(6):569–76.

    Article  CAS  PubMed  Google Scholar 

  165. Katzenberg D, Young T, Lin L, Finn L, Mignot E. A human period gene (HPER1) polymorphism is not associated with diurnal preference in normal adults. Psychiatr Genet. 1999;9(2):107–9.

    Article  CAS  PubMed  Google Scholar 

  166. Samuels C. Sleep, recovery, and performance: the new frontier in high-performance athletics. Neurol Clin. 2008;26(1):169–80; ix-x.

    Article  PubMed  Google Scholar 

  167. Rempe MJ, Best J, Terman D. A mathematical model of the sleep/wake cycle. J Math Biol. 2010;60(5):615–44.

    Article  PubMed  Google Scholar 

  168. Van Dongen HP, Dinges DF. Sleep, circadian rhythms, and psychomotor vigilance. Clin Sports Med. 2005;24(2):237–49, vii-viii.

    Article  PubMed  Google Scholar 

  169. Wyatt JK, Ritz-De Cecco A, Czeisler CA, Dijk DJ. Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day. Am J Phys. 1999;277(4 Pt 2):R1152–63.

    CAS  Google Scholar 

  170. Freivalds A, Chaffin DB, Langolf GD. Quantification of human performance circadian rhythms. Am Ind Hyg Assoc J. 1983;44(9):643–8.

    Article  CAS  PubMed  Google Scholar 

  171. Teo W, McGuigan MR, Newton MJ. The effects of circadian rhythmicity of salivary cortisol and testosterone on maximal isometric force, maximal dynamic force, and power output. J Strength Cond Res. 2011;25(6):1538–45.

    Article  PubMed  Google Scholar 

  172. Ly JQM, Gaggioni G, Chellappa SL, Papachilleos S, Brzozowski A, Borsu C, et al. Circadian regulation of human cortical excitability. Nat Commun. 2016;7:11828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Reilly T, Waterhouse J. Sports performance: is there evidence that the body clock plays a role? Eur J Appl Physiol. 2009;106(3):321–32.

    Article  PubMed  Google Scholar 

  174. Atkinson G, Todd C, Reilly T, Waterhouse J. Diurnal variation in cycling performance: influence of warm-up. J Sports Sci. 2005;23(3):321–9.

    Article  PubMed  Google Scholar 

  175. Edwards BJ, Lindsay K, Waterhouse J. Effect of time of day on the accuracy and consistency of the badminton serve. Ergonomics. 2005;48(11–14):1488–98.

    Article  PubMed  Google Scholar 

  176. Kline CE, Durstine JL, Davis JM, Moore TA, Devlin TM, Zielinski MR, et al. Circadian variation in swim performance. J Appl Physiol (1985). 2007;102(2):641–9.

    Article  Google Scholar 

  177. Drust B, Waterhouse J, Atkinson G, Edwards B, Reilly T. Circadian rhythms in sports performance--an update. Chronobiol Int. 2005;22(1):21–44.

    Article  CAS  PubMed  Google Scholar 

  178. Reilly T, Walsh TJ. Physiological, psychological and performance measures during an endurance record for 5-a-side soccer play. Br J Sports Med. 1981;15(2):122–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Reilly T, Thomas V. A motion analysis of work rate in different positional roles in professional football match play. J Hum Mov Stud. 1976;2:87–97.

    Google Scholar 

  180. Callard D, Davenne D, Gauthier A, Lagarde D, Van Hoecke J. Circadian rythms in human muscular efficiency: continuous physical exercise versus continuous rest. A crossover study. Chronobiol Int. 2000;17(5):693–704.

    Article  CAS  PubMed  Google Scholar 

  181. Sack RL. Clinical practice. Jet lag. N Engl J Med. 2010;362(5):440–7.

    Article  CAS  PubMed  Google Scholar 

  182. Tresguerres JAF, Ariznavarreta C, Granados B, Martín M, Villanúa MA, Golombek DA, et al. Circadian urinary 6-sulphatoxymelatonin, cortisol excretion and locomotor activity in airline pilots during transmeridian flights. J Pineal Res. 2001;31(1):16–22.

    Article  CAS  PubMed  Google Scholar 

  183. Recht LD, Lew RA, Schwartz WJ. Baseball teams beaten by jet lag. Nature. 1995;377(6550):583.

    Article  CAS  PubMed  Google Scholar 

  184. Reilly T, Waterhouse J, Edwards B. Jet lag and air travel: implications for performance. Clin Sports Med. 2005;24(2):367–80, xii.

    Article  PubMed  Google Scholar 

  185. Postolache TT, Raheja UK. Body rhythms/biological clocks. In: Friedman HS, editor. Encyclopedia of mental health. 2nd ed. Oxford: Academic Press; 2016. p. 193–203.

    Chapter  Google Scholar 

  186. Filipski E, Delaunay F, King VM, Wu MW, Claustrat B, Grechez-Cassiau A, et al. Effects of chronic jet lag on tumor progression in mice. Cancer Res. 2004;64(21):7879–85.

    Article  CAS  PubMed  Google Scholar 

  187. Harrington M. Location, location, location: important for jet-lagged circadian loops. J Clin Invest. 2010;120(7):2265–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014;159(3):514–29.

    Article  CAS  PubMed  Google Scholar 

  189. Postolache TT, Oren DA. Circadian phase shifting, alerting, and antidepressant effects of bright light treatment. Clin Sports Med. 2005;24(2):381–413, xii.

    Article  PubMed  Google Scholar 

  190. Rosenthal NE, Joseph-Vanderpool JR, Levendosky AA, Johnston SH, Allen R, Kelly KA, et al. Phase-shifting effects of bright morning light as treatment for delayed sleep phase syndrome. Sleep. 1990;13(4):354–61.

    CAS  PubMed  Google Scholar 

  191. Duffy JF, Kronauer RE, Czeisler CA. Phase-shifting human circadian rhythms: influence of sleep timing, social contact and light exposure. J Physiol. 1996;495(Pt 1):289–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Czeisler CA, Shanahan TL, Klerman EB, Martens H, Brotman DJ, Emens JS, et al. Suppression of melatonin secretion in some blind patients by exposure to bright light. N Engl J Med. 1995;332(1):6–11.

    Article  CAS  PubMed  Google Scholar 

  193. Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295(5557):1070–3.

    Article  CAS  PubMed  Google Scholar 

  194. Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. 2002;295(5557):1065–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Fernandez DC, Fogerson PM, Lazzerini Ospri L, Thomsen MB, Layne RM, Severin D, et al. Light affects mood and learning through distinct retina-brain pathways. Cell. 2018;175(1):71–84.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Schmidt TM, Chen SK, Hattar S. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci. 2011;34(11):572–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Reeves GM, Nijjar GV, Langenberg P, Johnson MA, Khabazghazvini B, Sleemi A, et al. Improvement in depression scores after 1 hour of light therapy treatment in patients with seasonal affective disorder. J Nerv Ment Dis. 2012;200(1):51–5.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Chang AM, Aeschbach D, Duffy JF, Czeisler CA. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc Natl Acad Sci U S A. 2015;112(4):1232–7.

    Article  CAS  PubMed  Google Scholar 

  199. Kredlow MA, Capozzoli MC, Hearon BA, Calkins AW, Otto MW. The effects of physical activity on sleep: a meta-analytic review. J Behav Med. 2015;38(3):427–49.

    Article  PubMed  Google Scholar 

  200. Buxton OM, Lee CW, L’Hermite-Baleriaux M, Turek FW, Van Cauter E. Exercise elicits phase shifts and acute alterations of melatonin that vary with circadian phase. Am J Physiol Regul Integr Comp Physiol. 2003;284(3):R714–24.

    Article  CAS  PubMed  Google Scholar 

  201. Hackney AC, Viru A. Twenty-four-hour cortisol response to multiple daily exercise sessions of moderate and high intensity. Clin Physiol. 1999;19(2):178–82.

    Article  CAS  PubMed  Google Scholar 

  202. Edgar DM, Dement WC. Regularly scheduled voluntary exercise synchronizes the mouse circadian clock. Am J Phys. 1991;261(4 Pt 2):R928–33.

    CAS  Google Scholar 

  203. Marchant EG, Mistlberger RE. Entrainment and phase shifting of circadian rhythms in mice by forced treadmill running. Physiol Behav. 1996;60(2):657–63.

    Article  CAS  PubMed  Google Scholar 

  204. Reebs SG, Mrosovsky N. Effects of induced wheel running on the circadian activity rhythms of Syrian hamsters: entrainment and phase response curve. J Biol Rhythm. 1989;4(1):39–48.

    Article  CAS  Google Scholar 

  205. Van Reeth O, Sturis J, Byrne MM, Blackman JD, L’Hermite-Baleriaux M, Leproult R, et al. Nocturnal exercise phase delays circadian rhythms of melatonin and thyrotropin secretion in normal men. Am J Phys. 1994;266(6 Pt 1):E964–74.

    Google Scholar 

  206. Baehr EK, Eastman CI, Revelle W, Olson SH, Wolfe LF, Zee PC. Circadian phase-shifting effects of nocturnal exercise in older compared with young adults. Am J Physiol Regul Integr Comp Physiol. 2003;284(6):R1542–50.

    Article  CAS  PubMed  Google Scholar 

  207. Barger LK, Wright KP Jr, Hughes RJ, Czeisler CA. Daily exercise facilitates phase delays of circadian melatonin rhythm in very dim light. Am J Physiol Regul Integr Comp Physiol. 2004;286(6):R1077–84.

    Article  CAS  PubMed  Google Scholar 

  208. Miyazaki T, Hashimoto S, Masubuchi S, Honma S, Honma KI. Phase-advance shifts of human circadian pacemaker are accelerated by daytime physical exercise. Am J Physiol Regul Integr Comp Physiol. 2001;281(1):R197–205.

    Article  CAS  PubMed  Google Scholar 

  209. Youngstedt SD, Kripke DF, Elliott JA. Circadian phase-delaying effects of bright light alone and combined with exercise in humans. Am J Physiol Regul Integr Comp Physiol. 2002;282(1):R259–66.

    Article  CAS  PubMed  Google Scholar 

  210. Yamanaka Y, Hashimoto S, Tanahashi Y, Nishide SY, Honma S, Honma K. Physical exercise accelerates reentrainment of human sleep-wake cycle but not of plasma melatonin rhythm to 8-h phase-advanced sleep schedule. Am J Physiol Regul Integr Comp Physiol. 2010;298(3):R681–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Glossary

Circadian phase

This is the phase of the circadian cycle, representing the timing of the internal biological clock and is usually estimated by measuring onset–offsets, troughs or peaks, or changes in slopes (i.e., increasing vs. decreasing) in circadian markers such as hormones (melatonin, cortisol, prolactin) or CBT. Circadian phase measurement should be performed in controlled dim light conditions. In animal research, rest–activity in dim light conditions is used to estimate circadian phase.

Circadian rhythms

A full 24-hour period rhythm that exists in all biological cells under a constant environment. It is derived from the Latin words circa and dies, meaning around and 1 day, respectively.

Chronobiology

The science concerned with the study of biological rhythms.

Chronotype

The natural tendency for an individual to either go to sleep and wake up early and perform best in the morning (a morning person AKA larks) or to go to sleep and wake up late and perform best in the evening (evening person AKA owls). The chronotype has been related to clock gene polymorphisms, to circadian sleep disorders, to mental and physical health.

Daily (diurnal) rhythms

Diurnal rhythms refer to variations in a physiological parameter with time of day. In contrast with circadian variations which are usually endogenous (i.e., intrinsically generated by the body clock; see below) but influenced by external light–dark cycle, diurnal variations can be either driven by the biological clock, external light–dark cycle, the sleep–wake cycle, or their interaction. These can be physiologic, hormonal, or behavioral in nature. They are measured with the light/dark cycle and sleep/wake cycle.

Entrainment

The process by which biological rhythms are synchronized (by timing signals) to a 24-h environmental cycle (usually the day/night cycle). Under entrainment or entrained conditions, circadian rhythms usually oscillate with a period of 24 h, induced by exposure to time cues (i.e., zeitgebers).

Free-running rhythm

A non-24-h rhythm seen in the absence of timing signals, most importantly in dark (or very dim light) conditions, which expresses the intrinsic circadian period of the circadian pacemaker (the suprachiasmatic nuclei, see below). Almost all animals have the internal circadian period slightly different than 24 h, either slightly shorter (as in most rodents) or slightly longer (as in humans, among other animals). Animals with longer than 24-h circadian rhythms tend to phase delay from 1 day to another in the absence of exposure to light during morning hours.

Jet lag

A circadian rhythm sleep disorder consisting of sleep difficulty at night, daytime sleepiness, impairment of daytime function, gastrointestinal disturbance, and general malaise associated with transmeridian air travel, resulting from a desynchrony between external time cues, sleep–wake, and timing of endogenous rhythms.

Masking

Obscuring of circadian rhythms (driven by the circadian pacemaker) by external or internal factors. For example, physiological processes and behaviors (such as opening and closure of eyelids, activity, food intake) associated with the sleep–wake cycle, exposure to bright light, eating, drinking, and standing could all be related to the rhythm of a physiological variable, though the rhythm is primarily generated endogenously by the circadian pacemaker. Therefore, measuring the rhythm of the variable (e.g., CBT) in the presence of an intact sleep–wake cycle and all the other external factors could “mask” the true contribution of the circadian pacemaker to the rhythm and lead to inaccurate measurements.

Misalignment protocol

(forced desynchrony) When an extreme non-24-hour cycle, like a 20-hour or a 28-hour cycle, is implemented to disentangle endogenous circadian rhythms and sleep–wake cycles.

Morningness–eveningness (ME)

The natural tendency for an individual to either go to sleep and wake up early and perform best in the morning (a morning person) or to go to sleep and wake up late and perform best in the evening (evening person). The ME has been related to clock gene polymorphisms and to circadian sleep disorders.

Nadir

This is the lowest point of a biological rhythm, e.g., the nadir of CBT is the lowest point on the CBT rhythm and is usually around 2 h before habitual wakening time in most individuals with a stable circadian rhythm.

Peripheral clocks

Autonomous clocks that exist in all cells of the body complementing the SCN which has a central clock. When aligned, these clocks work harmoniously with the master clock as well as with the environmental timing, and each other.

Phase advance

Positioning of a circadian rhythm earlier relative to clock time or other circadian markers.

Phase delay

Positioning of a circadian rhythm later relative to clock time or other circadian markers.

Phase response curve (PRC)

A graphical illustration of the relationship between the timing of exposure to a zeitgeber or other intervention (on the x-axis) and the shifting induced by the exposure to the zeitgeber or other intervention. Conventionally, on the y-axis, positive values represent phase advances, and negative values represent phase delays. For example, the circadian phase-shifting effects (advance or delay, depending on the time of exposure) of bright light or melatonin administration on any marker of circadian rhythms (such as CBT or the nocturnal melatonin secretion measured in blood or the onset of nocturnal melatonin secretion in saliva) have been presented as phase response curves. On the x-axis, timing is usually measured in relationship to a circadian marker—such as core temperature trough or the onset of melatonin secretion (i.e., internal timing) rather than external timing. Determination of circadian phase response curves is very demanding in terms of funds and time—requiring highly controlled conditions and minimizing exposure to zeitgebers.

Postprandial dip (or early afternoon dip)

The dip in performance observed during the midafternoon hours (incorrectly called postprandial), because it occurs in anticipation and not as a physiological reaction to the main meal of the day. For most individuals, performance measures (physical and cognitive) exhibit an increase from a low at the morning wake time to peak levels in the early evening time, but in some individuals a dip in performance is observed during the midafternoon hours.

Seasonal affective disorder

A form of depression that occurs in the fall and winter with spontaneous remission in spring and summer.

Suprachiasmatic nuclei (SCN)

A group of brain cells located bilaterally above the optic chiasm in the anterior basal hypothalamus and demonstrated to be the site of the master circadian oscillator (“body clock”) that synchronizes, as a conductor does with the orchestra, circadian rhythms of peripheral tissues, organs, and cells.

Wake maintenance zone

This is the time of the day (usually in the late evening) when the propensity for sleep is lowest and wakefulness or arousal is increased. The wake maintenance zone (also referred to as the forbidden zone for sleep) is mediated by the circadian pacemaker.

Zeitgeber

The name given to any external time-signaling stimuli that help maintain periodic regularity in circadian rhythms. It is a German word which literarily means “time giver.” Light is considered the most potent zeitgeber. Other zeitgebers are exercise, food, temperature, and social interactions.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Postolache, T.T., Gulati, A., Okusaga, O.O., Stiller, J.W. (2020). An Introduction to Circadian Endocrine Physiology: Implications for Exercise and Sports Performance. In: Hackney, A., Constantini, N. (eds) Endocrinology of Physical Activity and Sport. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-030-33376-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33376-8_20

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-33375-1

  • Online ISBN: 978-3-030-33376-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics