Skip to main content

Endogenous Opiates and Exercise-Related Hypoalgesia

  • Chapter
  • First Online:
Endocrinology of Physical Activity and Sport

Abstract

Endogenous opiates, endorphins and enkephalins, influence processes within the body including pain, cardiac function, blood pressure, cellular growth, immunity, and blood glucose regulation. Opiates discharged inside the CNS stay within this compartment, whereas those in the circulation primarily arise from the anterior pituitary gland, but some are released from immune cells and peripheral nerves. Generally, acute aerobic and resistance exercises of sufficient intensity and volume have been reported to induce a hypoalgesia response. This hypoalgesia response appears to be related to various pathways involved with endorphins and other neurotransmitters that alter perceptions of pain. Alteration of pain thresholds may transiently occur with exercise. Changes within the CNS using new technologies suggest beta-endorphins (βE) influence brain signaling. Furthermore, elevation in βE modifies immune responses that alter blood pressure, pain, and assist with blood glucose regulation during exercise. Limited research on enkephalins and exercise has been conducted, and results are equivocal. A limited number of studies have reported enkephalin increases within certain regions of the brain. However, discrepancies with the enkephalin response to endurance training have occurred. Clearly more research is needed dealing with endogenous opioids and exercise, especially in the CNS compartment, to help elucidate how exercise influences hypoalgesia and immune function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angelopoulos TJ. Beta-endorphin immunoreactivity during high-intensity exercise with and without opiate blockade. Eur J Appl Physiol. 2001;86(1):92–6.

    Article  CAS  PubMed  Google Scholar 

  2. Baiamonte BA, Kraemer RR, Chabreck CN, et al. Exercise-induced hypoalgesia: Pain tolerance, preference and tolerance for exercise intensity, and physiological correlates following dynamic circuit resistance exercise. J Sports Sci. 2017;35(18):1–7.

    Article  PubMed  Google Scholar 

  3. Band LC, Pert A, Willams W, et al. Central μ-opioid receptors mediate suppression of natural killer activity in vivo. Prog Neuroendocr. 1992;5:95–101.

    Google Scholar 

  4. Bardoni R, Tawfik VL, Wang D, et al. Delta opioid receptors presynaptically regulate cutaneous mechanosensory neuron input to the spinal cord dorsal horn. Neuron. 2014;81:1312–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139:267–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bement MK, Sluka KA. Low-intensity exercise reverses chronic muscle pain in the rat in a naloxone-dependent manner. Arch Phys Med Rehabil. 2005;86:1736–40.

    Article  PubMed  Google Scholar 

  7. Boone JB Jr, Corry JM. Proenkephalin gene expression in the brainstem regulates post-exercise hypotension. Brain Res Mol Brain Res. 1996;42(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  8. Boone JB Jr, Sherraden T, Pierzchala K, et al. Plasma Met-enkephalin and catecholamine responses to intense exercise in humans. J Appl Physiol. 1992;73(1):388–92.

    Article  CAS  PubMed  Google Scholar 

  9. Bradbury AF, Smyth DG, Snell CR, et al. C fragment of lipotropin has a high affinity for brain opiate receptors. Nature. 1976;260:793–5.

    Article  CAS  Google Scholar 

  10. Brellenthin AG, Crombie KM, Hillard CJ, Koltyn KF. Endocannabinoid and mood responses to exercise in adults with varying activity levels. Med Sci Sports Exerc. 2017;49(8):1688–96.

    Article  CAS  PubMed  Google Scholar 

  11. Brosseau L, Wells GA, Tugwell P, et al. Ottawa Panel evidence-based clinical practice guidelines for aerobic fitness exercises in the management of fibromyalgia: part 1. Phys Ther. 2008;88:857–71.

    Article  PubMed  Google Scholar 

  12. Bullen BA, Skrinar GS, Beitins IZ, et al. Endurance training effects on plasma hormonal responsiveness and sex hormone excretion. J Appl Physiol. 1984;56(6):1453–63.

    Article  CAS  PubMed  Google Scholar 

  13. Bush JA, Mastro AM, Kraemer WJ. Proenkephalin peptide F immunoreactivity in different circulatory biocompartments after exercise. Peptides. 2006;27(6):1498–506.

    Article  CAS  PubMed  Google Scholar 

  14. Carr DB, Ballantyene JC. Denorphins and analgesia. Compr Ther. 1987;13(12):7–13.

    CAS  PubMed  Google Scholar 

  15. Carr DB, Bullen BA, Skrinar GS, et al. Physical conditioning facilitates the exercise-induced secretion of beta-endorphin and beta-lipotropin in women. N Engl J Med. 1981;305:560–3.

    Article  CAS  PubMed  Google Scholar 

  16. Chan HCS, McCarthy D, Li J, et al. Designing safer analgesics via μ-opioid receptor pathways. Trends Pharmacol Sci. 2017;38:1016–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chatzitheodorou D, Kabitsis C, Malliou P, Mougios V. A pilot study of the effects of high-intensity aerobic exercise versus passive interventions on pain, disability, psychological strain, and serum cortisol concentrations in people with chronic low back pain. Phys Ther. 2007;87(3):304–12.

    Article  PubMed  Google Scholar 

  18. Chen JX, Zhao X, Yue GX, et al. Influence of acute and chronic treadmill exercise on rat plasma lactate and brain NPY, L-ENK, DYN A1-13. Cell Mol Neurobiol. 2007;27(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  19. Clark JE. Diet, exercise or diet with exercise: comparing the effectiveness of treatment options for weight-loss and changes in fitness for adults (18-65 years old) who are overfat, or obese; systematic review and meta-analysis. J Diabetes Metab Disord. 2015;14:31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Cipriano G, Neder JA, Umpierre D, et al. Sympathetic ganglion transcutaneous electrical nerve stimulation after coronary artery bypass graft surgery improves femoral blood flow and exercise tolerance. J Appl Physiol (1985). 2014;117(6):633–8.

    Article  Google Scholar 

  21. Colt EW, Wardlaw SL, Frantz AG. The effect of running on plasma beta-endorphin. Life Sci. 1981;28:1637–40.

    Article  CAS  PubMed  Google Scholar 

  22. Cook DB, Koltyn KF. Pain and exercise. Int J Sport Psychol. 2000;31:256–77.

    Google Scholar 

  23. Corder G, Tawfik VL, Wang D, et al. Loss of μ opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia. Nat Med. 2017;23:164–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Crombie KS, Brellenthin AG, Hillard CJ, Koltyn KF. Endocannabinoid and opioid system interactions in exercise-induced hypoalgesia. Pain Med. 2017;19(1):118–23. https://doi.org/10.1093/pm/pnx058.

    Article  PubMed Central  Google Scholar 

  25. Dearman J, Francis KT. Plasma levels of catecholamines, cortisol, and beta-endorphins in male athletes after running 26.2, 6, and 2 miles. J Sports Med Phys Fitness. 1983;23:30–8.

    CAS  PubMed  Google Scholar 

  26. Denning GM, Ackermann LW, Barna TJ, et al. Proenkephalin expression and enkephalin release are widely observed in non-neuronal tissues. Peptides. 2008;29(1):83–92.

    Article  CAS  PubMed  Google Scholar 

  27. de Oliveira MS, da Silva Fernandes MJ, Scorza FA. Acute and chronic exercise modulates the expression of MOR opioid receptors in the hippocampal formation of rats. Brain Res Bull. 2010;83(5):278–83.

    Article  PubMed  CAS  Google Scholar 

  28. Donevan RH, Andrew GM. Plasma beta-endorphin immunoreactivity during graded cycle ergometry. Med Sci Sports Exerc. 1987;19(3):229–33.

    Article  CAS  PubMed  Google Scholar 

  29. Droste C, Greenlee MW, Schreck M, et al. Experimental pain thresholds and plasma beta-endorphin levels during exercise. Med Sci Sports Exerc. 1991;23(3):334–42.

    Article  CAS  PubMed  Google Scholar 

  30. Ellingson LD, Koltyn KF, Kim JS, Cook DB. Does exercise induce hypoalgesia through conditioned pain modulation? Psychophysiology. 2014;51(3):267–76.

    Article  PubMed  Google Scholar 

  31. Elliot DL, Goldberg L, Watts WJ, et al. Resistance exercise and plasma beta-endorphin/beta-lipotrophin immunoreactivity. Life Sci. 1984;34(6):515–8.

    Article  CAS  PubMed  Google Scholar 

  32. Engfred K, Kjaer M, Secher NH, et al. Hypoxia and training-induced adaptation of hormonal responses to exercise in humans. Eur J Appl Physiol Occup Physiol. 1994;68(4):303–9.

    Article  CAS  PubMed  Google Scholar 

  33. Farrell PA, Gates WK, Maksud MG, et al. Increases in plasma beta-endorphin/beta-lipotropin immunoreactivity after treadmill running in humans. J Appl Physiol. 1982;52(5):1245–9.

    Article  CAS  PubMed  Google Scholar 

  34. Farrell PA, Gates WK, Morgan WP, Pert CB. Plasma leucine enkephalin-like radioreceptor activity and tension-anxiety before and after competitive running. In: Knuttgen HG, Vogel JA, Poortmans J, editors. Biochemistry of exercise, vol. 13. Champaign: Human Kinetics; 1983. p. 637–44.

    Google Scholar 

  35. Farrell PA, Kjaer M, Bach FW, et al. Beta-endorphin and adrenocorticotropin response to supramaximal treadmill exercise in trained and untrained males. Acta Physiol Scand. 1987;130(4):619–25.

    Article  CAS  PubMed  Google Scholar 

  36. Fatouros J, Goldfarb AH. Low carbohydrate diet induces changes in central and peripheral beta-endorphins. Nutr Res. 1995;15(11):1683–94.

    Article  CAS  Google Scholar 

  37. Fatouros J, Goldfarb AH, Jamurtas AZ, et al. Beta-endorphin infusion alters pancreatic endocrines and plasma glucose during exercise in rats. Eur J Appl Physiol. 1997;76:203–8.

    Article  CAS  Google Scholar 

  38. Ferreira MD, Menescal-de-Oliveira L. Opioidergic, GABAergic and serotonergic neurotransmission in the dorsal raphe nucleus modulates tonic immobility in guinea pigs. Physiol Behav. 2012;106(2):109–16.

    Article  CAS  PubMed  Google Scholar 

  39. Focht BC, Koltyn K. F. Alterations in pain perception after resistance exercise performed in the morning and evening. J Strength Cond Res. 2009;23(3):891–7.

    Article  PubMed  Google Scholar 

  40. Fry AC, Bonner E, Lewis DL, et al. The effects of gamma-oryzanol supplementation during resistance exercise training. Int J Sport Nutr. 1997;7(4):318–29.

    Article  CAS  PubMed  Google Scholar 

  41. Galdino G, Romero TR, Silva JF, et al. The endocannabinoid system mediates aerobic exercise-induced antinociception in rats. Neuropharmacology. 2014;77:313–24.

    Article  CAS  PubMed  Google Scholar 

  42. Galdino GS, Romero T, Silva JF, et al. Acute resistance exercise induces antinociception by activation of the endocannabinoid system in rats. Anesth Analg. 2014;119(3):702–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gannon GA, Rhind SG, Suzui M, et al. Beta-endorphin and natural killer cell cytolytic activity during prolonged exercise is there a connection? Am J Phys. 1998;275(6 Pt 2):1725–34.

    Google Scholar 

  44. Gilman SC, Schwartz JM, Milner RJ, et al. Beta-endorphin enhances lymphocyte proliferative responses. Proc Natl Acad Sci U S A. 1982;79(13):4226–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Goldfarb AH. Effect of gender and menstrual cycle on Beta-endorphin response to activity. Am J Med Sports. 2001;3:363–6.

    Google Scholar 

  46. Goldfarb AH, Hatfield BD, Armstrong D, et al. Plasma beta-endorphin concentration: response to intensity and duration of exercise. Med Sci Sports Exerc. 1990;22:241–4.

    CAS  PubMed  Google Scholar 

  47. Goldfarb AH, Hatfield BD, Potts J, et al. Beta-endorphin at the same relative exercise intensity: training effects. Int J Sports Med. 1991;12(3):264–8.

    Article  CAS  PubMed  Google Scholar 

  48. Goldfarb AH, Hatfield BD, Sforzo GA, et al. Serum beta-endorphins levels during a graded exercise test to exhaustion. Med Sci Sports Exerc. 1987;19(2):78–82.

    Article  CAS  PubMed  Google Scholar 

  49. Goldfarb AH, Jamurtas AZ, Kamimori G, et al. Gender and menstrual cycle effects on circulating beta-endorphin in response to exercise. Med Sci Sports Exerc. 1998;30(12):1672–6.

    Article  CAS  PubMed  Google Scholar 

  50. Goldstein A, Tachibana S, Lowney LI, et al. Dynorphin-(1–13), an extraordinarily potent opioid peptide. Proc Natl Acad Sci U S A. 1979;76(12):6666–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gowans SE, Dehueck A, Voss S, et al. Six-month and one-year follow up of 23 weeks of aerobic exercise for individuals with fibromyalgia. Arthritis Rheum. 2004;51(6):890–8.

    Article  CAS  PubMed  Google Scholar 

  52. Griffin A, Leaver A, Moloney N. General exercise does not improve long-term pain and disability in individuals with whiplash-associated disorders: a systematic review. J Orthop Sports Phys Ther. 2017;47(7):472–80.

    Article  PubMed  Google Scholar 

  53. Guindon J, Beaulieu P. The role of the endogenous cannabinoid system in peripheral analgesia. Curr Mol Pharmacol. 2009;2(1):134–9.

    Article  CAS  PubMed  Google Scholar 

  54. Gurevich M, Kohn PM, Davis C. Exercise-induced analgesia and the role of reactivity in pain sensitivity. J Sports Sci. 1994;6:549–59.

    Article  Google Scholar 

  55. Han JS. Acupuncture and endorphins. Neurosci Lett. 2004;361(1–3):258–61.

    Article  CAS  PubMed  Google Scholar 

  56. Harber VJ, Sutton JR, MacDougall JD, et al. Plasma concentrations of beta-endorphin in trained eumenorrheic and amenorrheic women. Fertil Steril. 1997;67(4):648–53.

    Article  CAS  PubMed  Google Scholar 

  57. Haufe S, Wiechmann K, Stein L, et al. Low-dose, non-supervised, health insurance initiated exercise for the treatment and prevention of chronic low back pain in employees. Results from a randomized controlled trial. PLoS One. 2017;12(6):e0178585.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hayden JA, Van Tulder MW, Tomlinson G. Systematic review: strategies for using exercise therapy to improve outcomes in chronic low back pain. Ann Intern Med. 2005;142(9):776–85.

    Article  PubMed  Google Scholar 

  59. Hebbes C. Non-opioid analgesics. Anaesth Intensive Care Med. 2016;17(9):469–72.

    Article  Google Scholar 

  60. Hedner T, Cassuto J. Opioids and opioid receptors in peripheral tissues. Scand J Gastroenterol Suppl. 1987;130:27–46.

    Article  CAS  PubMed  Google Scholar 

  61. Heitkamp HC, Huber W, Scheib K. Beta-endorphin and adrenocorticotrophin after incremental exercise and marathon running—female responses. Eur J Appl Physiol Occup Physiol. 1996;72(5–6):417–24.

    Article  CAS  PubMed  Google Scholar 

  62. Heitkamp HC, Schmid K, Scheib K. Beta-endorphin and adrenocorticotropic hormone production during marathon and incremental exercise. Eur J Appl Physiol Occup Physiol. 1993;66(3):269–74.

    Article  CAS  PubMed  Google Scholar 

  63. Hemmick LM, Bidlack JM. Beta-endorphin stimulates rat T lymphocyte proliferation. J Neuroimmunol. 1990;29(1–3):239–348.

    Article  CAS  PubMed  Google Scholar 

  64. Herkenham M, Lynn AB, Johnson MR, et al. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci. 1991;11:563–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hoffman MD, Shepanski MA, Ruble SB, et al. Intensity and duration threshold for aerobic exercise-induced analgesia to pressure pain. Arch Phys Med Rehabil. 2004;85:1183–7.

    Article  PubMed  Google Scholar 

  66. Hoffman P, Terenius L, Thoren P. Cerebrospinal fluid immunoreactive beta-endorphin concentration is increased by voluntary exercise in the spontaneously hypertensive rat. Regul Pept. 1990;28:233–9.

    Article  Google Scholar 

  67. Hohmann AG, Suplita RL. Endocannabinoid mechanisms of pain modulation. AAPSJ. 2006;9:E693–708.

    Article  Google Scholar 

  68. Howlett TA, Tomlin S, Ngahfoong L, et al. Release of beta endorphin and met-enkephalin during exercise in normal women: response to training. Br Med J (Clin Res Ed). 1984;288(6435):1950–2.

    Article  CAS  Google Scholar 

  69. Hughes J, Smith TW, Kosterlitz HW, et al. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature. 1975;258:577–9.

    Article  CAS  PubMed  Google Scholar 

  70. Ishide T, Mancini M, Maher TJ, et al. Rostral ventrolateral medulla opioid receptor activation modulates glutamate release and attenuates the exercise pressor reflex. Brain Res. 2000;865(2):177–85.

    Article  CAS  PubMed  Google Scholar 

  71. Jamurtas AZ, Goldfarb AH, Chung SC, et al. Beta-endorphin infusion during exercise in rats: blood metabolic effects. Med Sci Sports Exerc. 2000;32(9):1570–5.

    Article  CAS  PubMed  Google Scholar 

  72. Jamurtas AZ, Tofas T, Fatouros I, et al. The effects of low and high glycemic index foods on exercise performance and beta-endorphin responses. J Int Soc Sports Nutr. 2011;8(1):15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Janal MN, Colt EW, Clark WC, et al. Pain sensitivity, mood and plasma endocrine levels in man following long-distance running: effects of naloxone. Pain. 1984;19(1):13–25.

    Article  CAS  PubMed  Google Scholar 

  74. Jarmukli NF, Ahn J, Iranmanesh A, et al. Effect of raised plasma beta endorphin concentrations on peripheral pain and angina thresholds in patients with stable angina. Heart. 1999;82(2):204–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jaskowski MA, Jackson AS, Raven PB, et al. Enkephalin metabolism: effect of acute exercise stress and cardiovascular fitness. Med Sci Sports Exerc. 1989;21(2):154–60.

    Article  CAS  PubMed  Google Scholar 

  76. Jiang CL, Xu D, Lu CL, et al. Interleukin-2: structural and biological relatedness to opioid peptides. Neuroimmunomodulation. 2000;8(1):20–4.

    Article  CAS  PubMed  Google Scholar 

  77. Johnson EJ, Dieter BP, Marsh SA. Evidence for distinct effects of exercise in different cardiac hypertrophic disorders. Life Sci. 2015;123:100–6.

    Article  CAS  PubMed  Google Scholar 

  78. Jones MD, Taylor JL, Barry BK. Occlusion of blood flow attenuates exercise-induced hypoalgesia in the occluded limb of healthy adults. J Appl Physiol. 2017;122:1284–91.

    Article  PubMed  Google Scholar 

  79. Jonsdottir IH, Hellstrand K, Thorén P, et al. Enhancement of natural immunity seen after voluntary exercise in rats. Role of central opioid receptors. Life Sci. 2000;66(13):1231–9.

    Article  CAS  PubMed  Google Scholar 

  80. Kahn S, Anthony A, Hughes S, et al. Beta-endorphin decreases fatigue and increases glucose uptake independently in normal and dystrophic mice. Muscle Nerve. 2005;31:481–6.

    Article  CAS  Google Scholar 

  81. Kamphuis S, Eriksson F, Kavelaars A, et al. Role of endogenous pro-enkephalin A-derived peptides in human T cell proliferation and monocyte IL-6 production. J Neuroimmunol. 1998;84:53–60.

    Article  CAS  PubMed  Google Scholar 

  82. Kandasamy R, Price TJ. The pharmacology of nociceptor priming. Handb Exp Pharmacol. 2015;227:15–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kapasi ZF, Catlin PA, Beck J, et al. The role of endogenous opioids in moderate exercise training-induced enhancement of the secondary antibody response in mice. Phys Ther. 2001;81(11):1801–9.

    Article  CAS  PubMed  Google Scholar 

  84. Karlsson L, Gerdle B, Ghafouri B, et al. Intramuscular pain modulatory substances before and after exercise in women with chronic neck pain. Eur J Pain. 2015;19(8):1075–85.

    Article  CAS  PubMed  Google Scholar 

  85. Kay N, Allen J, Morley JE. Endorphins stimulate normal human peripheral blood lymphocyte natural killer activity. Life Sci. 1984;35(1):53–9.

    Article  CAS  PubMed  Google Scholar 

  86. Khachaturian H, Lewis ME, Schafer MK-H, et al. Anatomy of the CNS opioid systems. Trends Neurosci. 1985;8:111–9.

    Article  CAS  Google Scholar 

  87. Khedr EM, Omran EAH, Ismail NM, et al. Effects of transcranial direct current stimulation on pain, mood, and serum endorphin level in the treatment of fibromyalgia: a double blinded randomized clinical trial. Brain Stimul. 2017;10(5):893–901.

    Article  PubMed  Google Scholar 

  88. Koltyn KF. Analgesia following exercise. A review. Sports Med. 2000;29(2):85–98.

    Article  CAS  PubMed  Google Scholar 

  89. Koltyn KF. Exercise-induced hypoalgesia and intensity of exercise. Sports Med. 2002;32(8):477–87.

    Article  PubMed  Google Scholar 

  90. Koltyn KF, Arbogast RW. Perception of pain after resistance exercise. Br J Sports Med. 1998;32:1.

    Article  Google Scholar 

  91. Koltyn KF, Brellenthin AG, Cook DB, et al. Mechanisms of exercise-induced hypoalgesia. J Pain. 2014;15(12):1294–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kosek E, Ekhom J, Hansson P. Increased pressure pain sensibility in fibromyalgia patients is located deep to the skin but not restricted to muscle tissue. Pain. 1995;63(3):335–9.

    Article  CAS  PubMed  Google Scholar 

  93. Kosek E, Ekhom J, Hansson P. Modulation of pressure pain thresholds during and following isometric contraction in patients with fibromyalgia and in healthy controls. Pain. 1996;64(3):415–23.

    Article  CAS  PubMed  Google Scholar 

  94. Kosek E, Lundberg L. Segmental and plurisegmental modulation of pressure thresholds during static muscle contractions in healthy individuals. Eur J Pain. 2003;7(3):251–8.

    Article  PubMed  Google Scholar 

  95. Kraemer RR, Acevedo EO, Dzewaltowski D, et al. Effects of low-volume resistive exercise on beta-endorphin and cortisol concentrations. Int J Sports Med. 1996;17(1):12–6.

    Article  CAS  PubMed  Google Scholar 

  96. Kraemer RR, Blair S, Kraemer GR, Castracane VD. Effects of treadmill running on plasma beta-endorphin, corticotropin, and cortisol levels in male and female 10K runners. Eur J Appl Physiol Occup Physiol. 1989;58(88):45–51.

    Google Scholar 

  97. Kraemer WJ, Dziados JE, Marchitelli LJ, et al. Effects of different heavy-resistance exercise protocols on plasma beta-endorphin concentrations. J Appl Physiol. 1993;74(1):450–9.

    Article  CAS  PubMed  Google Scholar 

  98. Kraemer WJ, Fry AC, Warren BJ, et al. Acute hormonal responses in elite junior weightlifters. Int J Sports Med. 1992;13(2):103–9.

    Article  CAS  PubMed  Google Scholar 

  99. Kraemer WJ, Kim SK, Bush JA, et al. Influence of the menstrual cycle on proenkephalin peptide F responses to maximal cycle exercise. Eur J Appl Physiol. 2006;96(5):581–6.

    Article  CAS  PubMed  Google Scholar 

  100. Kraemer WJ, Nobles B, Culver B, et al. Changes in plasma proenkephalin peptide F and catecholamine levels during graded exercise in men. Proc Natl Acad Sci U S A. 1985;82:6349–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kregel J, Meeus M, Malfiet A, et al. Structural and functional brain abnormalities in chronic low back pain: a systematic review. Semin Arthritis Rheum. 2015;45(2):229–37.

    Article  PubMed  Google Scholar 

  102. Labuz D, Schreiter A, Schmidt Y, et al. T lymphocytes containing β-endorphin ameliorate mechanical hypersensitivity following nerve injury. Brain Behav Immun. 2010;24(7):1045–53.

    Article  CAS  PubMed  Google Scholar 

  103. Langenfeld ME, Hart LS, Kao PC. Plasma β-endorphin responses to one-hour bicycling and running at 60% VO2max. Med Sci Sports Exerc. 1987;19:83–6.

    Article  CAS  PubMed  Google Scholar 

  104. Lannersten L, Kosek E. Dysfunction of endogenous pain inhibition during exercise with painful muscles in patients with shoulder myalgia and fibromyalgia. Pain. 2010;151(1):77–86.

    Article  PubMed  Google Scholar 

  105. Larsson A, Palstam A, Lofgren M, et al. Resistance exercise improves muscle strength, health status and pain intensity in fibromyalgia – a randomized controlled trial. Arthritis Res Ther. 2015;17:161. https://doi.org/10.1186/s13075-015-0679-1.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lee YW, Chaplan SR, Yaksh T. Systemic and supraspinal, but not spinal, opiates suppress allodynia in a rat neuropathic pain model. Neruosci Lett. 1995;199:111–4.

    Article  CAS  Google Scholar 

  107. Li CH, Chung D. Isolation and structure of an untriakontapeptide with opiate activity from camel pituitary glands. Proc Natl Acad Sci U S A. 1976;73(4):1145–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Livett BG, Dean DM, Whelan LG, et al. Co-release of enkephalin and catecholamines from cultured adrenal chromaffin cells. Nature. 1981;289:317–9.

    Article  CAS  PubMed  Google Scholar 

  109. Lobstein DD, Ismail AH. Decreases in resting plasma beta-endorphin/-lipotropin after endurance training. Med Sci Sports Exerc. 1989;21(2):161–6.

    Article  CAS  PubMed  Google Scholar 

  110. Lukács A, Barkai L. Effect of aerobic and anaerobic exercises on glycemic control in type 1 diabetic youths. World J Diabetes. 2015;6(3):534–42.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Luger A, Deuster PA, Kyle SB, et al. Acute hypothalamic-pituitary-adrenal responses to the stress of treadmill exercise physiologic adaptations to physical training. N Engl J Med. 1987;316:1309–15.

    Article  CAS  PubMed  Google Scholar 

  112. Lyu X, Li S, Peng S, et al. Intensive walking exercise for lower extremity peripheral arterial disease: A systematic review and meta-analysis. J Diabetes. 2015;8(3):363–77. https://doi.org/10.1111/1753-0407.12304.

    Article  PubMed  Google Scholar 

  113. Malmros B, Mortensen L, Jensen MB, Charles P. Positive effects of physiotherapy on chronic pain and performance in osteoporosis. Osteoporosis Int. 1998;8(3):215–21.

    Article  CAS  Google Scholar 

  114. Mannerkorpi K, Henriksson C. Nonpharmacological treatment of chronic widespread musculoskeletal pain. Best Pract Res Clin Rheumatol. 2007;21:513–34.

    Article  PubMed  Google Scholar 

  115. Martinsen S, Flodin P, Berrebi J, et al. The role of long-term physical exercise on performance and brain activation during the Stroop colour word task in fibromyalgia patients. Clin Physiol Funct Imaging. 2017;38(3):508–16. https://doi.org/10.1111/cpf.12449.

    Article  PubMed  Google Scholar 

  116. McCain GA, Bell DA, Mai FM, Halliday PD. A controlled study of the effects of a supervised cardiovascular fitness training program on the manifestations of primary fibromyalgia. Arthritis Rheum. 1988;31(9):1135–41.

    Article  CAS  PubMed  Google Scholar 

  117. McGowan RW, Pierce EF, Eastman N, et al. Beta-endorphins and mood states during resistance exercise. Percept Motor Skills. 1993;76(2):376–8.

    Article  CAS  PubMed  Google Scholar 

  118. McMurray RG, Forsythe WA, Mar MH, et al. Exercise intensity-related responses of beta-endorphin and catecholamines. Med Sci Sports Exerc. 1987;6:570–4.

    Google Scholar 

  119. Meeus M, Roussel NA, Truijen S, Nijs J. Reduced pressure pain thresholds in response to exercise in chronic fatigue syndrome but not in chronic low back pain: an experimental study. J Rehabil Med. 2010;42(9):884–90.

    Article  PubMed  Google Scholar 

  120. Metzger JM, Stein EA. Beta-endorphin and sprint training. Life Sci. 1984;34(16):1541–7.

    Article  CAS  PubMed  Google Scholar 

  121. Millar DB, Hough CJ, Mazorow DL, et al. Beta-endorphin’s modulation of lymphocyte proliferation is dose, donor, and time dependent. Brain Behav Immun. 1990;4(3):232–42.

    Article  CAS  PubMed  Google Scholar 

  122. Mougin C, Baulay A, Henriet MT, et al. Assessment of plasma opioid peptides, beta-endorphin and met-enkephalin, at the end of an international Nordic ski race. Eur J Appl Physiol Occup Physiol. 1987;56(3):281–6.

    Article  CAS  PubMed  Google Scholar 

  123. Mousa SA, Zhang Q, Sitte N, et al. β-Endorphin-containing memory-cells and μ-opioid receptors undergo transport to peripheral inflamed tissue. J Neuroimmunol. 2001;15(1–2):71–8.

    Article  Google Scholar 

  124. Naugle KM, Fillingim RB, Riley JL. A meta-analytic review of the hypoalgesic effects of exercise. J Pain. 2012;13(12):1139–50.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Nauli SM, Maher TJ, Pearce WJ, et al. Effects of opioid receptor activation on cardiovascular responses and extracellular monoamines within the rostral ventrolateral medulla during static contraction of skeletal muscle. Neurosci Res. 2001;41(4):373–83.

    Article  CAS  PubMed  Google Scholar 

  126. Navolotskaya EV, Malkova NV, Zargarova TA, et al. Synthetic beta-endorphin-like peptide immunorphin binds to non-opioid receptors for beta-endorphin on T lymphocytes. Peptides. 2001;22(12):2009–13.

    Article  CAS  PubMed  Google Scholar 

  127. Nijs J, Kosek E, Van Oosterwijck J, Meeus M. Dysfunctional endogenous analgesia during exercise in patients with chronic pain: to exercise or not to exercise? Pain Physician. 2012;3S:ES205–13.

    Google Scholar 

  128. O’Connor PJ, Cook DB. Exercise and pain: the neurobiology, measurement, and laboratory study of pain in relation to exercise in humans. Exerc Sport Sci Rev. 1999;27:119–66.

    PubMed  Google Scholar 

  129. O’Donovan G, Blazevich A, Boreham C, et al. The ABC of physical activity for health: a consensus statement from the British association of sport and exercise sciences. J Sports Sci. 2010;28(6):573–91.

    Article  PubMed  Google Scholar 

  130. Oleshansky MA, Zoltick JM, Herman RH, et al. The influence of fitness on neuroendocrine responses to exhaustive treadmill exercise. Eur J Appl Physiol Occup Physiol. 1990;59(6):405–10.

    Article  CAS  PubMed  Google Scholar 

  131. Owen DL, Morley JS, Ensor DM, et al. The C-terminal tetrapeptide of beta-endorphin (MPF) enhances lymphocyte proliferative responses. Neuropeptides. 1998;32(2):131–9.

    Article  CAS  PubMed  Google Scholar 

  132. Paolisso G, Giugliano D, Scheen A, et al. Primary role of glucagon release in the effect of β-endorphin on glucose homeostasis in normal man. Acta Endocrinol. 1987;115:161–9.

    Article  CAS  Google Scholar 

  133. Pasnik J, Tchorzewski H, Baj Z, et al. Priming effect of met-enkephalin and β-endorphin on chemiluminescence, chemotaxis and CD11b molecule expression on human neutrophils in vitro. Immunol Lett. 1999;67(2):77–83.

    Article  CAS  PubMed  Google Scholar 

  134. Paulev PE, Thorbøll JE, Nielsen U, et al. Opioid involvement in the perception of pain due to endurance exercise in trained man. Jpn J Physiol. 1989;39(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  135. Pert CB, Snyder SH. Properties of opiate-receptor binding in rat brain. Proc Natl Acad Sci U S A. 1973;70(8):2243–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pierce EF, Eastman NW, McGowan RW, et al. Resistance exercise decreases beta-endorphin immunoreactivity. Br J Sports Med. 1994;28(3):164–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pierce EF, Eastman NW, Tripathi HT, et al. Plasma beta-endorphin immunoreactivity: response to resistance exercise. J Sports Sci. 1993;11(6):499–502.

    Article  CAS  PubMed  Google Scholar 

  138. Radosevich PM, Nash JA, Lacy DB, et al. Effects of low- and high-intensity exercise on plasma and cerebrospinal fluid levels of ir-beta-endorphin, ACTH, cortisol, norepinephrine and glucose in the conscious dog. Brain Res. 1989;498(1):89–98.

    Article  CAS  PubMed  Google Scholar 

  139. Rahkila P, Hakala E, Alén M, et al. Beta-endorphin and corticotropin release is dependent on a threshold intensity of running exercise in male endurance athletes. Life Sci. 1988;43(6):551–8.

    Article  CAS  PubMed  Google Scholar 

  140. Rahkila P, Hakala E, Salminen K, et al. Response of plasma endorphins to running exercises in male and female endurance athletes. Med Sci Sports Exerc. 1987;19(5):451–5.

    Article  CAS  PubMed  Google Scholar 

  141. Raithel KS. Chronic pain and exercise therapy. Phys Sportsmed. 1989;17(3):203–5.

    Article  CAS  PubMed  Google Scholar 

  142. Reid RL, Yen SS. Beta-endorphin stimulates the secretion of insulin and glucagon in humans. J Clin Endocrinol Metab. 1981;52(3):592–4.

    Article  CAS  PubMed  Google Scholar 

  143. Ruegsegger GN, Brown JD, Kovarik MC, et al. Mu opioid receptor inhibition decreases voluntary wheel running in a dopamine-dependent manner in rats bred for high voluntary running. Neuroscience. 2016;339:525–37.

    Article  CAS  PubMed  Google Scholar 

  144. Sadigh B, Berglund M, Fillingim RB, et al. Beta-endorphin modulates adenosine provoked chest pain in men, but not in women-a comparison between patients with ischemic heart disease and healthy volunteers. Clin J Pain. 2007;23(9):750–5.

    Article  PubMed  Google Scholar 

  145. Sahni S, Capozzi B, Iftikhar A, et al. Pulmonary rehabilitation and exercise in pulmonary arterial hypertension: an underutilized intervention. J Exerc Rehabil. 2015;11(2):74–9.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Saland LC, Van Epps DE, Maez D, et al. Acute infusion of chemotactic or enkephalin-analog peptides into rat cerebral ventricles: scanning and transmission electron microscopy of leukocyte immigration in vivo. J Neuroimmunol. 1988;18(3):197–206.

    Article  CAS  PubMed  Google Scholar 

  147. Scheef L, Jankowski J, Daamen M, et al. An fMRI study on the acute effects of exercise in pain processing in trained athletes. Pain. 2012;153(8):1702–14.

    Article  PubMed  Google Scholar 

  148. Schwarz L, Kindermann W. Beta-endorphin, adrenocorticotropic hormone, cortisol and catecholamines during aerobic and anaerobic exercise. Eur J Appl Physiol Occup Physiol. 1990;61(3–4):165–71.

    Article  CAS  PubMed  Google Scholar 

  149. Sforzo GA, Seeger TF, Pert CB, et al. In vivo opioid receptor occupation in the rat brain following exercise. Med Sci Sports Exerc. 1986;18(4):380–4.

    Article  CAS  PubMed  Google Scholar 

  150. Shephard RJ. Exercise and malignancy. Sports Med. 1986;3:235–41.

    Article  CAS  PubMed  Google Scholar 

  151. Shi Z, Zhou H, Lu L, et al. Aquatic exercises in the treatment of low back pain: a systematic review of the literature and meta-analysis of eight studies. Am J Phys Med Rehabil. 2018;97(2):116–22.

    Article  PubMed  Google Scholar 

  152. Sohn JH, Lee BH, Park SH, et al. Microinjection of opiates into the periaqueductal gray matter attenuates neuropathic pain symptoms in rats. Neuroreport. 2000;11:413–6.

    Article  Google Scholar 

  153. Sommers DK, Loots JM, Simpson SF, et al. Circulating met-enkephalin in trained athletes during rest,exhaustive treadmill exercise and marathon running. Eur J Clin Pharmacol. 1990;38(4):391–2.

    Article  CAS  PubMed  Google Scholar 

  154. Sommers DK, Simpson SF, Loots JM, et al. Effect of exercise on met-enkephalin in unfit and superfit individuals. Eur J Clin Pharmacol. 1989;37(4):399–400.

    Article  PubMed  Google Scholar 

  155. Stagg NJ, Mata HP, Ibrahim MM, et al. Regular exercise reverses sensory hypersensitivity in a rat neuropathic pain model: role of endogenous opioids. Anesthesiology. 2011;114(4):940–8.

    Article  CAS  PubMed  Google Scholar 

  156. Sylvén C, Eriksson B, Sheps DS, et al. Beta-endorphin but not metenkephalin counteracts adenosine-provoked angina pectoris-like pain. Neuroreport. 1996;7(12):1982–4.

    Article  PubMed  Google Scholar 

  157. Tashiro M, Itoh M, Fujimoto T, et al. Application of positron emission tomography to neuroimaging in sports sciences. Methods. 2008;45:300–6.

    Article  CAS  PubMed  Google Scholar 

  158. Thorén P, Floras JS, Hoffmann P, Seals DR. Endorphins and exercise: physiological mechanisms and clinical implications. Med Sci Sports Exerc. 1990;22(4):417–28.

    PubMed  Google Scholar 

  159. Tour J, Lofgren M, Mannerkorpi K, et al. Gene to gen interactions regulate endogenous pain modulation in fibromyalgia patients and healthy controls-atagonistic effects between opioid and serotonin-related genes. Pain. 2017;158(7):1194–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Triplett-McBride NT, Mastro AM, McBride JM, et al. Plasma proenkephalin peptide F and human B cell responses to exercise stress in fit and unfit women. Peptides. 1998;19(4):731–8.

    Article  CAS  PubMed  Google Scholar 

  161. Tsou K, Brown S, Sanudo-Pena MC, et al. Immunohistochemical distribution ocannabinoid CB1 receptors in the rat central nervous system. Neuroscience. 1998;83:393–411.

    Article  CAS  PubMed  Google Scholar 

  162. Tsuchimochi H, McCord JL, Kaufman MP. Peripheral mu-opioid receptors attenuate the augmented exercise pressor reflex in rats with chronic femoral artery occlusion. Am J Physiol Heart Circ Physiol. 2010;299(2):H557–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Umeda M, Lee W, Marino CW, Hilliard SC. Influence of moderate intensity physical activity levels and gender on conditioned pain modulation. J Sports Sci. 2016;34:467–76.

    Article  PubMed  Google Scholar 

  164. Vadivelu N, Mitra S, Hines RL. Peripheral opioid receptor agonists for analgesia: a comprehensive review. J Opioid Manag. 2011;7:55–68.

    Article  PubMed  Google Scholar 

  165. Van den Bergh P, Rozing J, Nagelkerken L. Two opposing modes of action of beta-endorphin on lymphocyte function. Immunology. 1991;72(4):537–43.

    PubMed  PubMed Central  Google Scholar 

  166. Van Epps DE, Saland L. Beta-endorphin and met-enkephalin stimulate human peripheral blood mononuclear cell chemotaxis. J Immunol. 1984;132(6):3046–53.

    PubMed  Google Scholar 

  167. Van Middelkoop M, Rubinstein SM, Verhagen AP. Exercise therapy for chronic nonspecific low-back pain. Best Pract Res Clin Rheumatol. 2010;24:193–204.

    Article  PubMed  Google Scholar 

  168. Van Oosterwijck J, Nijs J, Meeus M, et al. Pain inhibition and post-exertional malaise in myalgic encephalomyelitis chronic fatigue syndrome: an experimental study. J Intern Med. 2010;268(3):265–78.

    Article  PubMed  Google Scholar 

  169. Van Oosterwijck J, Nijs J, Meeus M, et al. Lack of endogenous pain inhibition during exercise in people with chronic whiplash associated disorders: an experimental study. J Pain. 2012;13(3):242–54.

    Article  PubMed  Google Scholar 

  170. Viru A, Tendzegolskis Z, Smirnova T. Changes of beta-endorphin level in blood during prolonged exercise. Endocrinol Exp. 1990;1–2:63–8.

    Google Scholar 

  171. Vissing J, Iwamoto GA, Fuchs IE, et al. Reflex control of glucoregulatory exercise responses by group III and IV muscle afferents. Am J Phys. 1994;266(3):R824–30.

    CAS  Google Scholar 

  172. Walberg-Rankin J, Franke WD, Gwazdauskas FC. Response of beta-endorphin and estradiol to resistance exercise in females during energy balance and energy restriction. Int J Sports Med. 1992;13(7):542–7.

    Article  CAS  PubMed  Google Scholar 

  173. Wen T, Peng B, Pintar JE. The MOR-1 opioid receptor regulates glucose homeostasis by modulating insulin secretion. Mol Endocrinol. 2009;23(5):671–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zitnik RJ, Whiting NL, Elias JA. Glucocorticoid inhibition of interleukin-1-induced interleukin-6 production by human lung fibroblasts: evidence for transcriptional and post-transcriptional regulatory mechanisms. Am J Respir Cell Mol Biol. 1994;10(6):643–50.

    Article  CAS  PubMed  Google Scholar 

  175. Zollner C, Stein C. Opioids. Handb Exp Pharmacol. 2007;177:31–63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan H. Goldfarb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goldfarb, A.H., Kraemer, R.R., Baiamonte, B.A. (2020). Endogenous Opiates and Exercise-Related Hypoalgesia. In: Hackney, A., Constantini, N. (eds) Endocrinology of Physical Activity and Sport. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-030-33376-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33376-8_2

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-33375-1

  • Online ISBN: 978-3-030-33376-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics