Skip to main content

The Influence of Curvature on the Modelling of Droplet Evaporation at Different Scales

  • Conference paper
  • First Online:
Droplet Interactions and Spray Processes

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 121))

  • 1081 Accesses

Abstract

The evaporation of liquid drops in stagnant gaseous environment is modelled, accounting for the effect of drop curvature and size at the macro- and microscopic scales. At the macro-scale level, the validity of the conjectured dependence of the local fluxes on the drop surface curvature is analysed. Analytical solutions to the gas-phase conservation equations for five drop shapes (sphere, oblate and prolate spheroids and inverse oblate and prolate spheroids), under uniform Dirichlet boundary conditions, are used to calculate the local vapour and heat fluxes. The analysis shows that in general non-dimensional fluxes do not solely depend on local curvature, but possibly the effect of the whole drop shape must be taken into account. At the micro-scale level, the equilibrium vapour pressure at a convex curved surface is higher than that at a flat surface, thus leading to a considerable enhancement of the evaporation rate for nanometre sized droplets. To model the increase in equilibrium vapour pressure, we consider the Kelvin correction. Our analysis shows that the Kelvin correction is strictly required for droplet radii below 20 Å, as typically encountered for modelling the growth of critical clusters in phase transition processes initiated by homogeneous nucleation. At these conditions, it is mandatory to consider also the repartition of molecules in the different phases, in order to prevent a significant overestimation of the equilibrium vapour pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sazhin, S.S.: Droplet and Sprays. Springer (2014)

    Google Scholar 

  2. Sazhin, S.S., Shishkova, I.N., Al Qubeissi, M.: A self-consistent kinetic model for droplet heating and evaporation. Int. J. Heat Mass Transf. 93, 1206–1217 (2016)

    Article  Google Scholar 

  3. Polikarpov, A.Ph., Graur, I.A., Gatapova, E.Ya., and Kabov, O.A.: Kinetic simulation of the non-equilibrium effects at the liquid-vapor interface. Int. J. Heat Mass Transfer 136, 449–456 (2019)

    Google Scholar 

  4. Zhakhovsky, V.V., Kryukov, A.P., Levashov, V.Y., Shishkova, I.N., Anisimov, S.I.: Mass and heat transfer between evaporation and condensation surfaces: atomistic simulation and solution of Boltzmann kinetic equation. Proc. Natl. Acad. Sci. 116(37), 18209–18217 (2018)

    Article  Google Scholar 

  5. Chakraborty, S., Qiao, L.: Molecular investigation of sub-to-supercritical transition of hydrocarbon mixtures: multi-component effect. Int. J. Heat Mass Transf. 145, 118629 (2019)

    Article  Google Scholar 

  6. Xiao, G., Luo, K.H., Ma, X., Shuai, S.: A molecular dynamics study of fuel droplet evaporation in sub- and supercritical conditions. Proc. Combust. Inst. 37(3), 3219–3227 (2019)

    Article  Google Scholar 

  7. Maxwell, J.C.: Diffusion, 9th edn. Ency, Brit (1877)

    Google Scholar 

  8. Sazhin, S.S.: Modelling of fuel droplet heating and evaporation: recent results and unsolved problems. Fuel 196, 69–101 (2017)

    Article  Google Scholar 

  9. Abramzon, B., Sirignano, W.A.: Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transf. 32(9), 1605–1618 (1989)

    Article  Google Scholar 

  10. Qian, J., Law, C.K.: Regimes of coalescence and separation in droplet collision. J. Fluid Mech. 331, 59–80 (1997)

    Article  Google Scholar 

  11. Jeng, S.M., Deng, Z.: Numerical simulation of deformed droplet dynamics and evaporation. Recent. Adv. Spray Combust.: Spray Combust. Meas. Model. Simul. 2, 305–328 (1996)

    Google Scholar 

  12. Mashayek, F.: Dynamics of evaporating drops. Part I:formulation and evaporation model. Int. J. Heat Mass Transfer 44, 1517–1526 (2001)

    Google Scholar 

  13. Lian, Z.W., Reitz, R.D.: The effect of vaporization and gas compressibility on liquid jet atomization. Atomization Sprays 3(3), 249–264 (1993)

    Article  Google Scholar 

  14. Tonini, S., Cossali, G.E.: An exact solution of the mass transport equations for spheroidal evaporating drops. Int. J. Heat Mass Transf. 60, 236–240 (2013)

    Article  Google Scholar 

  15. Tonini, S., Cossali, G.E.: One-dimensional analytical approach to modelling evaporation and heating of deformed drops. Int. J. Heat Mass Transfer 9, 301–307 (2016)

    Article  Google Scholar 

  16. Imaoka, R.T., Sirignano, W.A.: Transient vaporisation and burning in dense droplet spray. Int. J. Heat Mass Transf. 48, 4354–4366 (2005)

    Article  Google Scholar 

  17. Cossali, G.E., Tonini, S.: An analytical model of heat and mass transfer from liquid drops with temperature dependence of gas thermo-physical properties. Int. J. Heat Mass Transf. 138, 1166–1177 (2019)

    Article  Google Scholar 

  18. Thomson, W.: On the equilibrium of vapour at a curved surface of liquid. Philos. Mag. 4, 448–452 (1871)

    Article  Google Scholar 

  19. Gibbs, J.W.: The Scientific Papers of. J. Willard Gibbs, vol. 1, pp. 55–353. Woodbridge, Ox Bow (1993)

    Google Scholar 

  20. Elliott, J.A.W.: On the complete kelvin equation. Chem. Eng. Educ. 35, 274–278 (2001)

    Google Scholar 

  21. Kaptay, G.: The gibbs equation versus the Kelvin and the Gibbs- Thomson equations to describe nucleation and equilibrium of nano-materials. J. Nanosci. Nanotechnol. 12, 1–9 (2012)

    Article  Google Scholar 

  22. Kuz, V.A.: A vapor pressure equation for droplets. Langmuir 9, 3722–3723 (1993)

    Article  Google Scholar 

  23. Nguyen-Schäfer, H., Schmidt, J.P.: Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers. Springer (2014)

    Google Scholar 

  24. Tonini, S., Cossali, G.E.: Effect of local surface curvature on heating and evaporation of deformed droplets. In: DIPSI Workshop 2018-Droplet Impact Phenomena & Spray Investigations, Universit

    Google Scholar 

  25. Moon, P., Spencer, D.E.: Field Theory Handbook, 2nd edn. Springer-Verlag, Berlin (1988)

    Google Scholar 

  26. Quan, S., Lou, J., Schmidt, D.P.: Modeling merging and breakup in the moving mesh interface tracking method for multiphase flow simulations. J. Comput. Phys. 228(7), 2660–2675 (2009)

    Article  Google Scholar 

  27. Goldman, R.: Curvature formulas for implicit curves and surfaces. Comput. Aided Geom. Des. 22, 632–658 (2005)

    Article  MathSciNet  Google Scholar 

  28. Langmuir, I.: The dissociation of hydrogen into atoms. Part II: calculation of the degree of dissociation and the heat of formation. J. Am. Chem. Soc. 37, 417–458 (1915)

    Google Scholar 

  29. Sone, Y., Onishi, Y.: Kinetic theory of evaporation and condensation - Hydrodynamic equation and slip boundary condition. J. Phys. Soc. Jpn. 44(6), 1981–1994 (1978)

    Article  Google Scholar 

  30. Young, J.B.: The condensation and evaporation of liquid droplets at arbitrary Knudsen number in the presence of an inert gas. Int. J. Heat Mass Transf. 36(11), 2941–2956 (1993)

    Article  Google Scholar 

  31. Luijten, C.C.M.: Nucleation and Droplet Growth at High Pressure. Ph.D. Thesis, Technische Universiteit Eindhoven (1998)

    Google Scholar 

  32. Peeters, P., Pieterse, G., van Dongen, M.E.H.: Multi-component droplet growth. II. A Theoretical Model. Phys. Fluids 16(7), 2575–2586 (2004)

    MATH  Google Scholar 

  33. Kobayashi, K., Kazumasa, H., Kon, M., Sasaki, K., Watanabe, M.: Molecular dynamics study on evaporation and reflection of monatomic molecules to construct kinetic boundary condition in vapor-liquid equilibria. Heat Mass Transf. 52(9), 1851–1859 (2016)

    Article  Google Scholar 

  34. Kobayashi, K., Kon, M., Watanabe, M.: Kinetic boundary condition in vapor-liquid two-phase system during unsteady net evaporation/condensation. Eur. J. Mech. B. Fluids 64, 81–92 (2017)

    Article  MathSciNet  Google Scholar 

  35. Lemmon, E.W., Bell, I.H., Huber, M.L., McLinden, M.O.: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0. National Institute of Standards and Technology (2018)

    Google Scholar 

  36. Onishi, Y.: The spherical-droplet problem of evaporation and condensation in a vapour-gas mixture. J. Fluid Mech. 163, 171–194 (1986)

    Article  Google Scholar 

  37. Chernyak, V.G., Margilevskiy, A.Ye.: The kinetic theory of heat and mass transfer from a spherical particle in a rarefied gas. Int. J. Heat Mass Transfer 32(11), 2127–2134 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grazia Lamanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lamanna, G., Cossali, G.E., Tonini, S. (2020). The Influence of Curvature on the Modelling of Droplet Evaporation at Different Scales. In: Lamanna, G., Tonini, S., Cossali, G., Weigand, B. (eds) Droplet Interactions and Spray Processes. Fluid Mechanics and Its Applications, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-030-33338-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33338-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33337-9

  • Online ISBN: 978-3-030-33338-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics