Skip to main content

Effects of Habitat Fragmentation on the Genetic Variability of the Volcano Rabbit (Romerolagus diazi)

  • Chapter
  • First Online:
Conservation Genetics in Mammals

Abstract

Fragmentation of ecosystems and habitat loss may produce changes in the structure and distribution of communities. Low values of genetic diversity are generally linked to these processes, as a result of the reduction of the effective locality size. Recent habitat fragmentation has affected the connectivity of volcano rabbit (Romerolagus diazi) populations and has increased the risk of extinction of this species. The goals of this study were to estimate the genetic variability of the volcano rabbit localities in connected and unconnected patches and to estimate their genetic structure. A non-invasive fecal method was used in six collecting sites of the Sierra de Ajusco-Chichinautzin (Coajomulco, Chalchihuites, Pelado I, Pelado II, Tlaloc I, and Tlaloc II), located in the central mountains of the Trans-Mexican Volcanic Belt. Ten nuclear microsatellite loci designed for the species were used, and amplified products were genotyped and analyzed with different statistical programs. All microsatellites were polymorphic with a range of eight to sixteen alleles. Moderate genetic variation was observed as well as levels of expected heterozygosity (HE = 0.75, HO = 0.67), with low levels of differentiation (FST = 0.05). The greatest genetic variation was found within localities (94%). A fine scale was assessed, and the data suggested that sample patches represented two defined genetic groups (K = 2), although all localities had experienced gene flow. The population size varied between 8386 and 14,572 individuals. Finally, it was estimated that the volcano rabbit localities had reduction in its population sizes in the recent past.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aljanabi SM, Martínez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR–based techniques. Nucleic Acids Res 25:4692–4693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allendorf FW, Luikart G, Aitken SA (2013) Conservation and the genetics of populations. Wiley-Blackwell, EUA

    Google Scholar 

  • AMCELA (Mexican Association for Conservation and Study of Lagomorphs). Romero-Malpica FJ, Rangel–Cordero H, De Grammont PC, Cuaron AD (2008) Romerolagus diazi The IUCN Red list of threatened species 2008: e.T19742A9008580. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T19742A9008580. Download 13 May 2017

  • Antunes A, Troyer JL, Roelke ME, Pecon–Slattery J, Packer C, Winterbach C, Winterbach H, Hemson G, Frank L, Stander P, Siefert L, Driciru M, Funston PJ, Alexander KA, Prager KC, Mills G, Wildt D, Bush MS, O’Brien J, Johnson WE (2008) The evolutionary dynamics of the Lion Panthera leo revealed by host and viral population genomics. PLoS Genet 4: 1–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci U S A 98:4563–4568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biedrzycka A, Konopinski MK (2008) Genetic variability and the effect of habitat fragmentation in spotted suslik Spermophilus suslicus populations from two different regions. Conserv Genet 9:1211–1221

    Article  Google Scholar 

  • Burton C, Krebs CJ, Tayor EB (2002) Population genetic structure of the cyclic snowshoe hare (Lepus americanus) in southwestern Yukon, Canada. Mol Ecol 11:1689–1701

    Article  CAS  PubMed  Google Scholar 

  • Cao YL, Izabela Caputo L, Cheng H, Moreira da Silva Carmo F, Campos de Carvalho L, de Menezes Yazbeck G, de Oliveira Teixeira Z, Fu J, Guerrero JA, Hu G, Li J, Lin Z, Liu Ch, Liu YG, Liu LX, Lu F, Mao Y, Montes–Carreto LM, Moreno–Santillán DD, Ortega J, Ouyang S, Pan L, Qin Y, Rizo–Aguilar A, Sun TT, Wu XP, Yang W, Zanatta DT, Zhang G, Zhang R, Zheng R, Zhou CH (2016) Microsatellite records for volume 8, issue 3:359. Material Suplementario: Montes–Carreto LM, Guerrero JA, Rizo–Aguilar A, Moreno–Santillán D, Ortega J (2016) Development of microsatellite loci for the endangered Volcano rabbit (Romerolagus diazi) by using Illumina paired–end sequences. Conserv Genet Resour 8:359

    Google Scholar 

  • Carlsson J, McDowell J, Diaz-Jaimes P, Carlsson JE, Boles S, Gold JR, Graves JE (2004) Microsatellite and mitocondrial DNA analysis of Atlantic bluefin tuna (Thunnus thynnus thynnus) population structure in the Mediterranean Sea. Mol Ecol 13:3345–3356

    Article  CAS  PubMed  Google Scholar 

  • Cervantes FA (1982) Observaciones sobre la reproducción del zacatuche o teporingo Romerolagus diazi (mammalia: Lagomorpha). Doña Acta Vertebrata 9:416–420

    Google Scholar 

  • Cervantes F, Martínez J (1996) Historia natural del conejo zacatuche o teporingo (Romerolagus diazi). UNAM–FCE. México

    Google Scholar 

  • Dixo M, Metzger JP, Morgante JS, Zamudio KR (2009) Habitat fragmentation reduces genetic diversity and connectivity among toad populations in the Brazilian Atlantic Coastal Forest. Biol Conserv 142:1560–1569

    Article  Google Scholar 

  • Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 2:359–361

    Article  Google Scholar 

  • Estes–Zumpf WA, Rachlow JL, Waits LP, Warheit KI (2010) Dispersal, gene flow, and population genetic structure in the pygmy rabbit (Brachylagus idahoensis). J Mammal 91:208–219

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Ewens W (1972) The sampling theory of selectively neutral alleles. Theor Popul Biol 3:87–112

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver 3.0: an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    Article  CAS  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Ann Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fenderson LE, Kovach AI, Litvaitis JL, Litvaitis MK (2011) Population genetic structure and history of fragmented remnant populations of the New England cottontail (Sylvilagus transitionalis). Conserv Genet 12:943–958

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, New York, pp 644

    Google Scholar 

  • Gaines MS, Diffendorfer JE, Tamarin RH, Whittam TS (1997) The effects of habitat fragmentation on the genetic structure of small mammal populations. J Hered 88:294–304

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (2001) FSTAT A program to estimate and test gene diversity and fixation indices ver 2.9.3. http://www2.unil.ch/izea/software/fstat.html Updated from Goudet (1995)

  • Hedrick PW (2011) Genetics of populations. Jones and Bartlett, Boston, Massachusetts, EUA

    Google Scholar 

  • Hoth JA, Velázquez FJ, Romero L, León MA, Bell DJ (1987) The volcano rabbit: a shirking distribution and a threatened habitat. Oryx 21:85–91

    Article  Google Scholar 

  • Huenneke LF (1991) Ecological implications of genetic variation in plant populations. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants, pp 31–44. Oxford University Press, New York, NY

    Google Scholar 

  • IUCN (2010) The IUCN red list of threatened species. http://www.iucnredlist.org. Downloaded on 23 June 2015

  • Johansson M, Primmer CR, Merila J (2007) Does habitat fragmentation reduce fitness and adaptability? a case study of the common frog (Rana temporaria). Mol Ecol 16:2693–2700

    Article  PubMed  Google Scholar 

  • Kalinowski ST, Wagner AP, Taper ML (2006) ML–Relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Resour 6:576–579

    Article  CAS  Google Scholar 

  • Keyghobadi N (2007) The genetic implications of habitat fragmentation for animals. Can J Zool 85:1049–1064

    Google Scholar 

  • Klimova A, Munguia-Vega M, Hoffman JI, Culver M (2014) Genetic diversity and demography of two endangered captive pronghorn subspecies from the Sonoran Desert. J Mammal 95:1263–1277

    Article  Google Scholar 

  • Lancaster A, Nelson MP, Meyer D, Single RM, Thomson G (2003) PyPop: a software framework for population genomics: analyzing large-scale multilocus genotype data. Tissue Antigens 8:514–525

    Google Scholar 

  • Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottleneck populations from allele frequency data. Conserv Biol 12:228–237

    Article  Google Scholar 

  • Neaves LE, Zenger KR, Prince RIT, Eldridge MDB, Cooper DW (2009) Landscape discontinuities influence gene flow and genetic structure in a large, vagile Australian mammal, Macropus fuliginosus. Mol Ecol 18:3363–3378

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, EUA

    Book  Google Scholar 

  • Ochoa A, Gasca J, Ceballos GJ, Eguiarte LE (2012) Spatiotemporal population genetics of the endangered Perote ground squirrel (Xerospermophilus perotensis) in a fragmented landscape. J Mammal 92:1061–1074

    Article  Google Scholar 

  • Osuna FJ (2015) Diversidad, estructura genética y filogeografía del conejo de los volcanes (Romerolagus diazi). MSc thesis, Instituto de Ecología AC, México

    Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90:502–503

    Google Scholar 

  • Pogson GH, Taggart CT, Mesa KA, Boutilier RG (2001) Isolation by distance in the Atlantic Cod, Gadus morhua, at large and small geographic scales. Evolution 55:131–146

    Article  CAS  PubMed  Google Scholar 

  • Portales GL, Reyes P, Rangel H, Velázquez A, Miller P, Ellis S, Smith AT (1997) International workshop for the conservation of mexican lagomorphs in danger of extinction. IUCN/SSC Lagomorph Specialist Group and IUCN/SSC Conservation Breeding Specialist Group, Apple Valley, MN

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP: population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Reed DH (2004) Extinction risk in fragmented habitats. Anim Conserv 7:181–191

    Article  Google Scholar 

  • Rico Y, Lorenzo C, González-Cózatl FX, Espinoza E (2008) Phylogeography and population structure of the endangered Tehuantepec jackrabbit Lepus flavigularis: implications for conservation. Conserv Genet 9:1467–1477

    Article  Google Scholar 

  • Rivera-Ortíz FA, Aguilar R, Arizmendi MCD, Quesada M, Oyama K (2015) Habitat fragmentation and genetic variability of tetrapod populations. Anim Conserv 18:249–258

    Article  Google Scholar 

  • Rizo-Aguilar A, Delfín-Alfonso C, González-Romero A, Guerrero JA (2016) Distribution and density of the volcano rabbit (Romerolagus diazi) at the Protected Natural Area “Corredor Biológico Chichinautzin”. Therya 7:333–342

    Article  Google Scholar 

  • Rizo-Aguilar A, Guerrero JA, Hidalgo-Mihart MG, González-Romero A (2015) Relationship between the abundance of the Endangered volcano rabbit Romerolagus diazi and vegetation structure in the Sierra Chichinautzin mountain range, Mexico. Oryx 49:360–365

    Article  Google Scholar 

  • SEMARNAT (2010) Norma Oficial Mexicana NOM–059–SEMARNAT–2010 Protección ambiental–Especies nativas de México de flora y fauna silvestres–Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio–Lista de especies en riesgo, p 153. México, Diario Oficial de la Federación, 30 de diciembre del 2010

    Google Scholar 

  • Siebe C, Rodríguez-Lara V, Schaaf P, Abrams M (2004) Radiocarbon ages of Holocene Pelado, Guespalapa and Chichinauhtzin scoria cones, south of 55 Mexico City: implications for archeology and future hazards. Bull Volcanol 66:203–225

    Article  Google Scholar 

  • Surridge AK, Bell DJ, Ibrahim KM, Hewitt GE (1999) Population structure and genetic variation of European wild rabbits (Oryctolagus cuniculus) in East Anglia. Heredity 82:479–487

    Article  PubMed  Google Scholar 

  • Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N, Waits LP, Bouvet J (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24:3189–3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uphyrkina O, O´Brien SJ (2003) Applying molecular genetics tools to the conservation and action plan for the critically endangered Fast Eastern leopard (Panthera pardus orientalis). CR Biol 326:S93–S97

    Article  Google Scholar 

  • Uriostegui–Velarde JM (2013) Conectividad de las poblaciones del zacatuche (Romerolagus diazi) en la sierra del Chichinautzin. MSc thesis, CIBYC, Universidad Autónoma del estado de Morelos, México

    Google Scholar 

  • Uriostegui–Velarde JM, González–Romero A, Pineda E, Reyna–Hurtado R, Rizo–Aguilar A, Guerrero JA (2018) Configuration of the volcano rabbit (Romerolagus diazi) landscape in the Ajusco–Chichinautzin Mountain Range. J Mammal, pp 1–10. https://doi.org/10.1093/jmammal/gyx174

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Velázquez A (1994) Distribution and population size of Romerolagus diazi on El Pelado Volcano, México. J Mammal 75:743–749

    Article  Google Scholar 

  • Velázquez A, Heil GW (1996) Habitat suitability study for the conservation of the volcano rabbit (Romerolagus diazi). J Appl Ecol 33:543–554

    Article  Google Scholar 

  • Velázquez A, Romero J, López–Paniagua J (1996) Ecología y conservación del conejo zacatuche Romerolagus diazi y su hábitat. Fondo de Cultura Económica, Universidad Nacional Autónoma de México, México

    Google Scholar 

  • vonHoldt BM, Stahler DR, Bangs EE, Smith DW, Jimenez MD, Mack CM, Niemeyer CC, Pollinger JP, Wayne RK (2010) A novel assessment of population structure and gene flow in grey wolf populations of the Northern Rocky Mountains of the United States. Mol Ecol 19:4412–4427

    Article  PubMed  Google Scholar 

  • Walker FM, Sunnucks P, Taylor AC (2008) Evidence for habitat fragmentation altering within-population processes in wombats. Mol Ecol 17:1674–1684

    Article  PubMed  Google Scholar 

  • Watterson GA (1978) The homozygosity tests of neutrality. Genetics 88:405–417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weir BS, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution 6:1358–1370

    Google Scholar 

  • Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv Genet 6:551–562

    Article  Google Scholar 

  • Wright F (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Article  CAS  PubMed  Google Scholar 

  • Young A, Boyle T, Brown AHD (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge CONACyT Ciencia Básica (156725), Proyecto SIP Instituto Politécnico Nacional-ENCB (20150459), and PROCER-CONANP for grants that provided funding for this project. We are grateful to our colleagues from the Facultad de Ciencias Biológicas at the Universidad Autónoma del Estado de Morelos and the Escuela Nacional de Ciencias Biológicas at the Instituto Politécnico Nacional for their encouragement, support, and help throughout the process of completing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Antonio Guerrero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Smithsonian Institution

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montes-Carreto, L.M., Guerrero, J.A., Ortega, J. (2020). Effects of Habitat Fragmentation on the Genetic Variability of the Volcano Rabbit (Romerolagus diazi). In: Ortega, J., Maldonado, J. (eds) Conservation Genetics in Mammals. Springer, Cham. https://doi.org/10.1007/978-3-030-33334-8_9

Download citation

Publish with us

Policies and ethics