Skip to main content

Genetic Analyses of Non-invasively Collected Samples Aids in the Conservation of Elephants

  • Chapter
  • First Online:
Conservation Genetics in Mammals

Abstract

Elephants, which are among the most high-profile of the charismatic megafauna, are increasingly found in the human-dominated landscapes outside protected areas, creating the potential for serious economic impacts and tragic consequences for both humans and elephants. Managing elephants and other wide-ranging species requires information about population and group sizes, demography, distribution and habitat connectivity. Although we can view African savannah elephants (Loxodonta africana) from the air and estimate population sizes and movements through direct observations, these data are especially difficult to obtain for African forest elephants (Loxodonta cyclotis) and Asian elephants (Elephas maximus), as aerial surveys cannot detect animals under the closed canopy and ground surveys cannot be performed due to the dense vegetation. The case studies presented here illustrate the power of genetic studies using DNA obtained from non-invasively collected samples to provide biologists with important insights at the individual and population levels. In the Rift Valley of southern Kenya, the use of these methods allowed researchers to infer the movement patterns, demography and stress levels of a recently reestablished population of African savannah elephants on Maasai community land. Although behavioral studies of African forest elephants have suggested that social groups are predominately made up of a single female and her offspring, genetic analyses revealed evidence of weak, but significant, kin-based social structure comparable to the family groups observed in African savannah elephants. For the Asian elephant population of the Nakai Plateau, Lao PDR, genetic analyses allowed researchers to infer population size and demographic structure, and to estimate the level of genetic diversity. Despite having a considerably smaller population size than those found in India and Sri Lanka, the genetic diversity of the Nakai elephants continues to be among the highest reported in Asian elephants, highlighting the conservation value of this and other small, isolated populations in southeast Asia. These studies illustrate the breadth of information that can be obtained and highlight the use of genetic data in the conservation of these keystone species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlering M, Hedges S, Johnson AH, Eggert LS (2011a) Genetic diversity, social structure, and conservation value of the elephants of the Nakai Plateau, Lao PDR, based on non-invasive sampling. Conserv Genet 12:413–422

    Article  Google Scholar 

  • Ahlering MA, Millspaugh JJ, Woods RJ, Western D, Eggert LS (2011b) Elevated levels of stress hormones in crop-raiding male elephants. Animal Conserv 14:124–130

    Article  Google Scholar 

  • Ahlering MA, Eggert LS, Western D, Estes A, Munishi L, Fleischer RC, Roberts M, Maldonado JE (2012a) Identifying source populations and genetic structure for savannah elephants in human-dominated landscapes and protected areas in the Kenya-Tanzania borderlands. PLoS ONE 7:e52288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahlering MA, Maldonado JE, Fleischer RC, Western D, Eggert S (2012b) Fine-scale group structure and demography of African savanna elephants recolonizing lands outside protected areas. Divers Distrib 18:952–961

    Article  Google Scholar 

  • Ahlering MA, Maldonado JE, Eggert LS, Fleischer RC, Western D, Brown JL (2013) Conservation outside of protected areas and the effect of human-dominated landscapes on stress hormones in savannah elephants. Conserv Biol 27:569–575

    Article  CAS  PubMed  Google Scholar 

  • Archie EA, Moss CJ, Alberts SC (2003) Characterization of tetranucleotide microsatellite loci in the African savannah elephant (Loxodonta africana africana). Mol Ecol Notes 3:244–246

    Article  CAS  Google Scholar 

  • Archie EA, Moss CJ, Alberts SC (2006) The ties that bind: genetic relatedness predicts the fission and fusion of social groups in wild African elephants. P Roy Soc Lond B Bio:513–522

    Article  CAS  PubMed Central  Google Scholar 

  • Archie EA, Maldonado JE, Hollister-Smith JA, Poole JH, Moss CJ, Fleischer RC, Alberts SC (2008) Fine-scale population genetic structure in a fission-fusion society. Mol Ecol 17:2666–2679

    Article  PubMed  Google Scholar 

  • Armbruster P, Lande R (1993) A population viability analysis for African elephant (Loxodonta africana): how big should reserves be? Conserv Biol 7:602–610

    Article  Google Scholar 

  • Barnes RFW (2002) The problem of precision and trend detection posed by small elephant populations in West Africa. Afr J Ecol 40:179–185

    Article  Google Scholar 

  • Barnes RFW, Jensen KL (1987) How to count elephants in forests. Afr Elephant Rhino Spec Group Tech Bull 1:1–6

    Google Scholar 

  • Berger-Tal O, Polak T, Oron A, Lubin Y, Kotler BP, Saltz D (2011) Integrating animal behavior and conservation biology: a conceptual framework. Behav Ecol 22:236–239

    Article  Google Scholar 

  • Blake S, Deem SL, Stringberg S, Maisels F, Momont L, Isia I-B, Douglas-Hamilton I, Karesh WB, Kock MD (2008) Roadless wilderness area determines forest elephant movements in the Congo Basin. PLoS ONE 3:e3546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borgatti SP (2002) NetDraw software for network visualization. In: Analytic Technologies, Lexington, KY. Available at https://sites.google.com/site/netdrawsoftware/home. Accessed 8/7/18

  • Borgatti SP, Everett MG, Freeman LC (2002) Ucinet for Windows: software for social network analysis. In: Analytic Technologies, Harvard. Available at https://sites.google.com/site/ucinetsoftware/home. Accessed 8/7/18

  • Bunney K, Bond WJ, Henley M (2017) Seed dispersal kernel of the largest surviving megaherbivore – the African savanna elephant. Biotropica 49:395–401

    Article  Google Scholar 

  • Campos-Arceiz A, Blake S (2011) Megagardeners of the forest—the role of elephants in seed dispersal. Acta Oecol 37:542–553

    Article  Google Scholar 

  • Choudhury A, Lahiri-Choudhury DK, Desai A, Duckworth JW, Easa PS, Johnsingh AJT, Fernando P, Hedges S, Gunawardena M, Kurt F, Karanth U, Lister A, Menon V, Riddle H, Rübel A, Wikramanayake E (IUCN SSC Asian Elephant Specialist Group) (2008) Elephas maximus. The IUCN Red List of Threatened Species, IUCN, Gland

    Google Scholar 

  • Comstock KE, Wasser SK, Ostrander EA (2000) Polymorphic microsatellite DNA loci identified in the African elephant (Loxodonta africana). Mol Ecol 9:1004–1005

    Article  CAS  PubMed  Google Scholar 

  • Comstock KE, Georgiadis N, Pecon-Slattery J, Roca AL, Ostrander EA, O’Brien SJ, Wasser SK (2002) Patterns of molecular genetic variation among African elephant populations. Mol Ecol 11:2489–2498

    Article  CAS  PubMed  Google Scholar 

  • Douglas-Hamilton I (1972) On the ecology and behaviour of the African elephant: the elephants of Lake Manyara. In: Dissertation, Oxford University

    Google Scholar 

  • Douglas-Hamilton I, Krink T, Vollrath F (2005) Movements and corridors of African elephants in relation to protected areas. Natuwissenschaften 92:158–163

    Article  CAS  Google Scholar 

  • Duckworth W, Hedges S (1998) Tracking Tigers: a review of the status of tiger, Asian elephant, gaur, and banteng in Vietname, Laos, Cambodia, and Yunnan (China), with recommendations for future conservation action. In: WWF Indochina Programme 7, 1st edn. Hanoi

    Google Scholar 

  • Eggert LS (2007) Genetic survey of the elephants of the Nakai Plateau, Lao PDR. Report to the Wildlife Conservation Society, Vientiane

    Google Scholar 

  • Eggert LS, Budd K (2017) Asian elephant mtDNA analysis from Nam Kading, Lao PDR. Report to the Wildlife Conservation Society, Vientiane

    Google Scholar 

  • Eggert LS, Ruiz-Lopez M (2011) Analysis of fecal DNA samples to estimate size and sex ratio of the elephant population at Seima Biodiversity Conservation Area in Cambodia using capture-recapture methods. Report to the Wildlife Conservation Society, Phnom Penh

    Google Scholar 

  • Eggert LS, Ruiz-Lopez M (2012) Analysis of fecal DNA samples to estimate the sex ratio and size of the Sepon Asian Elephant population in the Lao PDR using capture-recapture methods. Report to the Wildlife Conservation Society, Vientiane

    Google Scholar 

  • Eggert LS, Eggert JA, Woodruff DS (2003) Estimating population sizes for elusive animals: the forest elephants of Kakum National Park, Ghana. Mol Ecol 12:1389–1402

    Article  CAS  PubMed  Google Scholar 

  • Eggert LS, Ramakrishnan U, Mundy NI, Woodruff DS (2000) Polymorphic microsatellite DNA markers in the African elephant (Loxodonta africana) and their use in the Asian elephant (Elephas maximus). Mol Ecol 9:2223–2225

    Article  CAS  PubMed  Google Scholar 

  • Eggert LS, Ahlering M, Manka S (2008) Lessons from genetic censuses of forest elephants. In: Olson D (ed) Proceedings of the 2007 international elephant conservation and research symposium, Orlando, 2007

    Google Scholar 

  • FAO (2002) Human elephant conflict resolution in Lao PDR. Technical report of the UNDP/FAO/GoL mission. Food and Agriculture Organization of the United Nations, Vientiane

    Google Scholar 

  • Fernando P, Lande R (2000) Molecular genetic and behavioral analysis of social organization in the Asian elephant (Elephas maximus). Behav Ecol Sociobiol 48:84–91

    Article  Google Scholar 

  • Fernando P, Vidya TNC, Melnick DJ (2001) Isolation and characterization of tri- and tetranucleotide microsatellite loci in the Asian elephant, Elephas maximus. Mol Ecol Notes 1:232–233

    Article  CAS  Google Scholar 

  • Fernando P, Wikramanayake E, Weerakoon D, Jayasinghe LKA, Gunawardene M, Janaka HK (2005) Perceptions and patterns of human-elephant conflict in old and new settlements in Sri Lanka: insights for mitigation and management. Biodivers Conserv 14:2465–2481

    Article  Google Scholar 

  • Finch T (2013) A noninvasive approach to understanding adaptation, crop raiding behavior, and the fecal microbiota of the African elephants. In: Dissertation, University of Missouri

    Google Scholar 

  • Foley C, Pettorelli N, Foley L (2008) Severe drought and calf survival in elephants. Biol Letters 4:541–544

    Article  Google Scholar 

  • Frankham R (2010) Challenges and opportunities of genetic approaches to biological conservation. Biol Conserv 143:1919–1927

    Article  Google Scholar 

  • Gobush K, Kerr B, Wasser S (2009) Genetic relatedness and disrupted social structure in a poached population of African elephants. Mol Ecol 18:722–734

    Article  CAS  PubMed  Google Scholar 

  • Goodnight KF, Queller DC (1999) Computer software for performing likelihood tests of pedigree relationship using genetic markers. Mol Ecol 8:1231–1234

    Article  Google Scholar 

  • Goossens B, Sharma R, Othman N, Kun-Rodrigues C, Sakong R, Ancrenaz M, Ambu LN, Jue NK, O’Neill RJ, Bruford MW, Chikhi L (2016) Habitat fragmentation and genetic diversity in natural populations of the Bornean elephant: implications for conservation. Biol Conserv 196:80–92

    Article  Google Scholar 

  • Gray TNE, Vidya TNC, Potdar S, Bharti DK, Prum S (2014) Population size estimation of an Asian elephant population in eastern Cambodia through non-invasive mark-recapture sampling. Conserv Genet 15:803–810

    Article  Google Scholar 

  • Harich FK, Treydte AC, Ogutu JO, Roberts JE, Savini C, Bauer JM, Savini T (2016) Seed dispersal potential of Asian elephants. Acta Oecol 77:144–151

    Article  Google Scholar 

  • Haynes G (2012) Elephants (and extinct relatives) as earth-movers and ecosystem engineers. Geomorphology 157–158:99–107

    Article  Google Scholar 

  • Hedges S, Lawson D (2006) Dung survey standards for the MIKE Programme. CITES MIKE Programme, Nairobi

    Google Scholar 

  • Hedges S, Tyson MJ, Sitompul AF, Kinnaird MF, Gunaryadi D, Aslan (2005) Distribution, status, and conservation of Asian elephants (Elephas maximus) in Lampung Province, Sumatra, Indonesia. Biol Conserv 124:35–48

    Article  Google Scholar 

  • Hedges S, Johnson A, Ahlering MA, Tyson M, Eggert LS (2013) Accuracy, precision and cost-effectiveness of conventional dung density and fecal DNA based survey methods to estimate Asian elephant (Elephas maximus) population size and structure. Biol Conserv 159:101–108

    Article  Google Scholar 

  • Ishida Y, Oleksyk TK, Georgiadis NJ, David VA, Zhao K, Stephens RM, Kolokotronis S-O, Roca AL (2011) Reconciling apparent conflicts between mitochondrial and nuclear phylogenies in African elephants. PLoS ONE 6:e20642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jachmann H, Bell RHV (1984) The use of elephant droppings in assessing numbers, occupance and age structure: a refinement of the method. Afr J Ecol 22:127–141

    Article  Google Scholar 

  • Joshi R, Singh R (2009) Wildlife corridors and Asian elephants (Elephas maximus): Lessons from Rajaji National Park, North-West India. J Amer Sci 5:31–40

    Google Scholar 

  • Keay JM, Singh J, Gaunt MC, Kaur T (2006) Fecal glucocorticoids and their metabolites as indicators of stress in various mammalian species: a literature review. J Zoo Wildlife Med 37:234–244

    Article  Google Scholar 

  • Kersey DC, Dehnhard M (2014) The use of noninvasive and minimally invasive methods in endocrinology for threatened mammalian species conservation. Gen Comp Endocr 203:296–306

    Article  CAS  PubMed  Google Scholar 

  • Duckworth JW, Salter RE, Khounboline, K (1999) Wildlife in Lao PDR: 1999 status report. IUCN-The World Conservation Union, Wildlife Conservation Society, Centre for Protected Areas and Watershed Management, Vientiane

    Google Scholar 

  • Khounboline K (2011) Current Status of Asian Elephants in Lao PDR. Gajah 35:4

    Google Scholar 

  • Kioko J, Kiringe J, Omondi P (2006) Human-elephant conflict outlook in the Tsavo-Amboseli ecosystem, Kenya. Pachyderm 41:53–60

    Google Scholar 

  • Kioko J, Muruthi P, Omondi P, Chiyo PI (2008) The performance of electric fences as elephant barriers in Amboseli, Kenya. S Afr J Wildl Res 38:52–58

    Article  Google Scholar 

  • Kohn MH, York EC, Kamradt DA, Haught G, Sauvajot RM, Wayne RK (1999) Estimating population size by genotyping faeces. P Roy Soc Lond B Bio 266:657–663

    Article  CAS  Google Scholar 

  • Kongrit C, Siripunkaw C, Brockelman WY, Akkarapatumwong V, Wright TF, Eggert LS (2008) Isolation and characterization of dinucleotide microsatellite loci in the Asian elephant (Elephas maximus). Mol Ecol Res 8:175–177

    Article  CAS  Google Scholar 

  • Laing SE, Buckland ST, Burns RW, Lambie D, Amphlett A (2003) Dung and nest surveys: estimating decay rates. J Appl Ecol 40:1102–1111

    Article  Google Scholar 

  • Lee PC, Graham MD (2006) African elephants Loxodonta africana and human-elephant interactions: implications for conservation. Int Zoo Yearb 40:9–19

    Article  Google Scholar 

  • Maisels F, Strindberg S, Blake S, Wittemyer G, Hart J, Williamson EA, Aba’a R, Abitsi G, Ambahe RD, Amsini F, Bakabana PC, Hicks TC, Bayogo RE, Bechem M, Beyers RL, Bezangoye AN, Boundja P, Bout N, Akou ME, Bene LB, Fosso B, Greengrass E, Grossmann F, Ikamba-Nkulu C, Ilambu O, Inogwabini B-I, Iyenguet F, Kiminou F, Kokangove M, Kujirakwinja D, Latour S, Lienogola I, Mackaya Q, Madidi J, Madzoke B, Makoumbou C, Malanda G-A, Malonga R, Mbani O, Mbendzo VA, Ambassa E, Ekinde A, Mihindou Y, Morgan BJ, Motsaba P, Moukala G, Mounguengui A, Mowawa BS, Ndzai C, Nixon S, Nkumu P, Nzolani F, Pintea L, Plumptre A, Rainey H, de Semboli BB, Serckx A, Stokes E, Turkalo A, Vanleeuwe H, Vosper A, Warren Y (2013) Devastating decline of forest elephants in central Africa. PLoS ONE 8:e59469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin C (1991) The Rainforests of West Africa. Birkhäuser Verlag, Basel

    Book  Google Scholar 

  • Millspaugh JJ, Washburn BE (2004) Use of fecal glucocorticoid metabolite measures in conservation biology research: considerations for application and interpretation. Gen Comp Endocrinol 138:189–199

    Article  CAS  PubMed  Google Scholar 

  • Momont L (2007) Sélection de l’habitat et organisation sociale de l’éléphant de forêt, Loxodonta africana cyclotis (Matschie 1900), au Gabon. Muséum National d’Histoire Naturelle, Paris

    Google Scholar 

  • Moss CJ (2001) The demography of an African elephant (Loxodonta africana) population in Amboseli, Kenya. J Zool Soc Lond 255:145–156

    Article  Google Scholar 

  • Moss CJ, Poole JH (1983) Relationships and social structure of African elephants. In: Hinde RA (ed) Primate social relationships. Sinauer & Associates, Sunderland, pp 315–325

    Google Scholar 

  • Moss CJ, Croze H, Lee PC (2011) The Amboseli elephants: a long-term perspective on a long-lived mammal. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Munshi-South J, Tchignoumba L, Brown JL, Abbondanza N, Maldonado JE, Henderson A, Alonso A (2008) Physiological indicators of stress in African forest elephants (Loxodonta africana cyclotis) in relation to petroleum operations in Gabon, Central Africa. Divers Distrib 14:993–1001

    Article  Google Scholar 

  • Ngene S, Okello MM, Mukeka J, Muya S, Njumbi S, Isiche J (2017) Home range sizes and space use of African elephants (Loxodonta africana) in the southern Kenya and northern Tanzania borderland landscape. Int J Biodivers Conserv 9:9–26

    Article  Google Scholar 

  • Nyakaana S, Arctander P (1998) Isolation and characterization of microsatellite loci in the African elephant, Loxodonta africana. Mol Ecol 7:1436–1437

    CAS  PubMed  Google Scholar 

  • Okello JBA, Masembe C, Rasmussen HB, Wittemyer G, Omondi P, Kahindi O, Muwanika VB, Arctander P, Douglas-Hamilton I, Nyakaana S, Siegismund HR (2008) Population genetic structure of savannah elephants in Kenya: conservation and management implications. J Hered 99:443–452

    Article  CAS  PubMed  Google Scholar 

  • Osborn FV (2002) Capiscum oleoresin as an elephant repellent: field trials in the communal lands of Zimbabwe. J Wildlife Manage 66:674–677

    Article  Google Scholar 

  • Osborn FV, Parker GE (2003) Towards an integrated approach for reducing the conflict between elephants and people: a review of current research. Oryx 37:80–84

    Article  Google Scholar 

  • Owens MJ, Owens D (2009) Early age reproduction in female savanna elephants (Loxodonta africana) after severe poaching. Afr J Ecol 47:214–222

    Article  Google Scholar 

  • Pant G, Dhakal M, Pradhan NMB, Leverington F, Hockings M (2016) Nature and extent of human-elephant Elephas maximus conflict in central Nepal. Oryx 50:724–731

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petit RJ, Excoffier L (2008) Gene flow and species delimitation. Trends Ecol Evol 24:386–393

    Article  Google Scholar 

  • Pollard E, Eggert LS, Chanvibol C, Hedges S (2008) The status and conservation of Asian elephants in the Seima Biodiversity Conservation Area. Report to the Wildlife Conservation Society, Phnom Penh, Cambodia

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using molecular markers. Evolution 43:258–275

    Article  PubMed  Google Scholar 

  • Schuttler SG, Philbrick J, Jeffery K, Eggert LS (2014a) Fine scale genetic structure and cryptic associations reveal evidence of kin-based sociality in the African forest elephant. PLoS ONE 9:e88074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schuttler SG, Whittaker A, Philbrick JA, Jeffery KJ, Eggert LS (2014b) African forest elephant social networks: fission-fusion dynamics, but fewer associations. Endanger Species Res 25:165–173

    Article  Google Scholar 

  • Sitati NW, Walpole MJ (2006) Assessing farm-based measures for mitigating human-elephant conflict in Transmara District, Kenya. Oryx 40:279–286

    Article  Google Scholar 

  • Tarlow EM, Blumstein DT (2007) Evaluating methods to quantify anthropogenic stressors on wild animals. Appl Anim Behav Sci 102:429–451

    Article  Google Scholar 

  • Taylor BL, Gerrodette T (1993) The uses of statistical power in conservation biology: the vaquita and the northern spotted owl. Conserv Biol 7:489–500

    Article  Google Scholar 

  • Tchamba MN (1996) History and present status of the human/elephant conflict in the Waza-Logone region, Cameroon, West Africa. Biol Conserv 75:35–41

    Article  Google Scholar 

  • Tingvold HG, Fyumagwa R, Bech C, Baardsen LF, Rosenlund H, Roskaft E (2013) Determining adrenocortical activity as a measure of stress in African elephants (Loxodonta africana) in relation to human activities in Serengeti ecosystem. Afr J Ecol 51:580–589

    Article  Google Scholar 

  • Turkalo A, Fay JM (1996) Studying forest elephants by direct observation: preliminary results from the Dzanga clearing, Central African Republic. Pachyderm 21:45–54

    Google Scholar 

  • Vidya TNC, Sukumar R (2005) Social organization of the Asian elephant (Elephas maximus) in southern India inferred from microsatellite DNA. J Ethol 23:205–210

    Article  Google Scholar 

  • Vidya TNC, Fernando P, Melnick DJ, Sukumar R (2005) Population genetic structure and conservation of Asian elephants (Elephas maximus) across India. Anim Conserv 8:377–388

    Article  Google Scholar 

  • Waits LP, Paetkau D (2005) Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. J Wildlife Manage 4:1419–1433

    Article  Google Scholar 

  • Wittemyer G, Getz WM, Vollrath F, Douglas-Hamilton I (2007) Social dominance, seasonal movements, and spatial segregation in African elephants: a contribution to conservation behavior. Behav Ecol Sociobiol 61:1919–1931

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori S. Eggert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Smithsonian Institution

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahlering, M., Budd, K., Schuttler, S., Eggert, L.S. (2020). Genetic Analyses of Non-invasively Collected Samples Aids in the Conservation of Elephants. In: Ortega, J., Maldonado, J. (eds) Conservation Genetics in Mammals. Springer, Cham. https://doi.org/10.1007/978-3-030-33334-8_11

Download citation

Publish with us

Policies and ethics