Skip to main content

The Efficiency of Multi-target Drugs: A Network Approach

  • Chapter
  • First Online:
Approaching Complex Diseases

Part of the book series: Human Perspectives in Health Sciences and Technology ((HPHST,volume 2))

Abstract

Multi-target agents have attracted great attention in the last 15 years, as they are expected to provide more efficacious and safer therapeutic solutions, less prone to drug resistance phenomena. They thus seem particularly valuable in the fields of complex disorders and infectious diseases. We discuss the generalities of tailored multi-target drug design, including target combination choice, optimization of potency ratio to the different targets, peculiarities of computer-guided drug discovery and design considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng, W., N. Thorne, and J. McKew. 2013. Phenotypic screens as a renewed approach for drug discovery. Drug Discovery Today 18 (21–22): 1067–1073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Margineanu, D. 2014. Systems biology, complexity, and the impact on antiepileptic drug discovery. Epilepsy & Behavior 38: 131–142.

    Article  Google Scholar 

  3. Cruz-Monteagudo, M., S. Schürer, E. Tejera, Y. Pérez-Castillo, J. Medina-Franco, A. Sánchez-Rodríguez, and F. Borges. 2017. Systemic QSAR and phenotypic virtual screening: chasing butterflies in drug discovery. Drug Discovery Today 22 (7): 994–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lo, Y., S. Rensi, W. Torng, and R. Altman. 2018. Machine learning in chemoinformatics and drug discovery. Drug Discovery Today 23 (8): 1538–1546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Croston, G. 2017. The utility of target-based discovery. Expert Opinion on Drug Discovery 12 (5): 427–429.

    Article  PubMed  Google Scholar 

  6. Talevi, A. 2015. Multi-target pharmacology: Possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Frontiers in Pharmacology 6: 205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ramsay, R., M. Popovic-Nikolic, K. Nikolic, E. Uliassi, and M. Bolognesi. 2018. A perspective on multi-target drug discovery and design for complex diseases. Clinical and Translational Medicine 7 (1): 3.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hopkins, A. 2008. Network pharmacology: The next paradigm in drug discovery. Nature Chemical Biology 4 (11): 682–690.

    Article  CAS  PubMed  Google Scholar 

  9. Chen, Y., J. Zhu, P. Lum, X. Yang, S. Pinto, D. MacNeil, C. Zhang, J. Lamb, S. Edwards, S. Sieberts, A. Leonardson, L. Castellini, S. Wang, M. Champy, B. Zhang, V. Emilsson, S. Doss, A. Ghazalpour, S. Horvath, T. Drake, A. Lusis, and E. Schadt. 2008. Variations in DNA elucidate molecular networks that cause disease. Nature 452 (7186): 429–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aloy, P., and R. Russell. 2004. Taking the mystery out of biological networks. EMBO Reports 5 (4): 349–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Whitacre, J. 2012. Biological robustness: Paradigms, mechanisms, and systems principles. Frontiers in Genetics 3: 67.

    PubMed  PubMed Central  Google Scholar 

  12. Talevi, A. 2016. Tailored multi-target agents. Applications and design considerations. Current Pharmaceutical Design 22 (21): 3164–3170.

    Article  CAS  PubMed  Google Scholar 

  13. Swinney, D., and J. Anthony. 2011. How were new medicines discovered? Nature Reviews. Drug Discovery 10 (7): 507–519.

    Article  CAS  PubMed  Google Scholar 

  14. Groenendijk, F., and R. Bernards. 2014. Drug resistance to targeted therapies: Déjà vu all over again. Molecular Oncology 8 (6): 1067–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Talevi, A., and B. Luis Enrique. 2013. On the development of new antiepileptic drugs for the treatment of Pharmacoresistant epilepsy: Different approaches to different hypothesis. In Pharmacoresistance in epilepsy, ed. L. Rocha and E. Cavalheiro, 1st ed., 207–224. New York: Springer.

    Chapter  Google Scholar 

  16. Yao, J., and C. Rock. 2016. Resistance mechanisms and the future of bacterial Enoyl-acyl carrier protein reductase (FabI) antibiotics. Cold Spring Harbor Perspectives in Medicine 6 (3): a027045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Pinto, J., R. Machado, J. Xavier, and M. Futschik. 2014. Targeting molecular networks for drug research. Frontiers in Genetics 5: 160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Reddy, A., and S. Zhang. 2013. Polypharmacology: Drug discovery for the future. Expert Review of Clinical Pharmacology 6 (1): 41–47.

    Article  CAS  PubMed  Google Scholar 

  19. Hughes, J., S. Rees, S. Kalindjian, and K. Philpott. 2011. Principles of early drug discovery. British Journal of Pharmacology 162 (6): 1239–1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kola, I., and J. Landis. 2004. Can the pharmaceutical industry reduce attrition rates? Nature Reviews. Drug Discovery 3 (8): 711–716.

    Article  CAS  PubMed  Google Scholar 

  21. Schuster, D., C. Laggner, and T. Langer. 2005. Why drugs fail – a study on side effects in new chemical entities. Current Pharmaceutical Design 11 (27): 3545–3559.

    Article  CAS  PubMed  Google Scholar 

  22. Talevi, A. 2018. Computer-aided drug design: An overview. Methods in Molecular Biology 1762: 1–19.

    Article  CAS  PubMed  Google Scholar 

  23. Lusher, S., R. McGuire, R. Azevedo, J. Boiten, R. van Schaik, and J. de Vlieg. 2011. A molecular informatics view on best practice in multi-parameter compound optimization. Drug Discovery Today 16 (13–14): 555–568.

    Article  CAS  PubMed  Google Scholar 

  24. Yu, H., P. Kim, E. Sprecher, V. Trifonov, and M. Gerstein. 2007. The importance of bottlenecks in protein networks: Correlation with gene essentiality and expression dynamics. PLoS Computational Biology 3 (4): e59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Csermely, P., T. Korcsmáros, H. Kiss, G. London, and R. Nussinov. 2013. Structure and dynamics of molecular networks: A novel paradigm of drug discovery. Pharmacology & Therapeutics 138 (3): 333–408.

    Article  CAS  Google Scholar 

  26. Ágoston, V., P. Csermely, and S. Pongor. 2005. Multiple weak hits confuse complex systems: A transcriptional regulatory network as an example. Physical Review E 71 (5): 051909.

    Article  CAS  Google Scholar 

  27. Perez-Lopez, Á., K. Szalay, D. Türei, D. Módos, K. Lenti, T. Korcsmáros, and P. Csermely. 2015. Targets of drugs are generally and targets of drugs having side effects are specifically good spreaders of human interactome perturbations. Scientific Reports 5 (1): 10182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Farkas, I., T. Korcsmaros, I. Kovacs, A. Mihalik, R. Palotai, G. Simko, K. Szalay, M. Szalay-Beko, T. Vellai, S. Wang, and P. Csermely. 2011. Network-based tools for the identification of novel drug targets. Science Signaling 4 (173): pt3.

    Article  PubMed  CAS  Google Scholar 

  29. Bianchi, M., J. Pathmanathan, and S. Cash. 2009. From ion channels to complex networks: Magic bullet versus magic shotgun approaches to anticonvulsant pharmacotherapy. Medical Hypotheses 72 (3): 297–305.

    Article  CAS  PubMed  Google Scholar 

  30. Lipton, S. 2006. Paradigm shift in neuroprotection by NMDA receptor blockade: Memantine and beyond. Nature Reviews. Drug Discovery 5 (2): 160–170.

    Article  CAS  PubMed  Google Scholar 

  31. Zheng, H., M. Fridkin, and M. Youdim. 2014. From single target to multitarget/network therapeutics in Alzheimer’s therapy. Pharmaceuticals 7 (2): 113–135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Rammes, G., R. Rupprecht, U. Ferrari, W. Zieglgänsberger, and C. Parsons. 2001. The N-methyl-d-aspartate receptor channel blockers memantine, MRZ 2/579 and other amino-alkyl-cyclohexanes antagonise 5-HT3 receptor currents in cultured HEK-293 and N1E-115 cell systems in a non-competitive manner. Neuroscience Letters 306 (1–2): 81–84.

    Article  CAS  PubMed  Google Scholar 

  33. Seeman, P., C. Caruso, and M. Lasaga. 2007. Memantine agonist action at dopamine D2High receptors. Synapse 62 (2): 149–153.

    Article  CAS  Google Scholar 

  34. Aracava, Y., E. Pereira, A. Maelicke, and E. Albuquerque. 2005. Memantine blocks 7∗ nicotinic acetylcholine receptors more potently than N-methyl-D-aspartate receptors in rat hippocampal neurons. The Journal of Pharmacology and Experimental Therapeutics 312 (3): 1195–1205.

    Article  CAS  PubMed  Google Scholar 

  35. Klitgaard, H., A. Matagne, J. Nicolas, M. Gillard, Y. Lamberty, M. De Ryck, R. Kaminski, K. Leclercq, I. Niespodziany, C. Wolff, M. Wood, J. Hannestad, Kervyn, and B. Kenda. 2016. Brivaracetam: Rationale for discovery and preclinical profile of a selective SV2A ligand for epilepsy treatment. Epilepsia 57 (4): 538–548.

    Article  PubMed  Google Scholar 

  36. Gillard, M., B. Fuks, K. Leclercq, and A. Matagne. 2011. Binding characteristics of brivaracetam, a selective, high affinity SV2A ligand in rat, mouse and human brain: Relationship to anti-convulsant properties. European Journal of Pharmacology 664 (1–3): 36–44.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, L., S. Li, H. Li, and X. Zou. 2016. Levetiracetam vs. brivaracetam for adults with refractory focal seizures: A meta-analysis and indirect comparison. Seizure 39: 28–33.

    Article  PubMed  Google Scholar 

  38. Zhu, L., D. Chen, D. Xu, G. Tan, H. Wang, and L. Liu. 2017. Newer antiepileptic drugs compared to levetiracetam as adjunctive treatments for uncontrolled focal epilepsy: An indirect comparison. Seizure 51: 121–132.

    Article  PubMed  Google Scholar 

  39. Borghs, S., M. Charokopou, C. Brandt, and P. Klein. 2016. Response to Zhang et al.: Levetiracetam vs. brivaracetam for adults with refractory focal seizures: A meta- analysis and indirect comparison. Seizure 41: 182–183.

    Article  PubMed  Google Scholar 

  40. Lin, Z., and Z. Xiaoyi. 2016. Response to “Response to Zhang et al.: Levetiracetam vs. brivaracetam for adults with refractory focal seizures: A meta-analysis and indirect comparison”. Seizure 41: 184–186.

    Article  PubMed  Google Scholar 

  41. Wong, E., F. Tarazi, and M. Shahid. 2010. The effectiveness of multi-target agents in schizophrenia and mood disorders: Relevance of receptor signature to clinical action. Pharmacology & Therapeutics 126 (2): 173–185.

    Article  CAS  Google Scholar 

  42. Roth, B., D. Sheffler, and W. Kroeze. 2004. Magic shotguns versus magic bullets: Selectively non-selective drugs for mood disorders and schizophrenia. Nature Reviews. Drug Discovery 3 (4): 353–359.

    Article  CAS  PubMed  Google Scholar 

  43. Proschak, E., H. Stark, and D. Merk. 2019. Polypharmacology by design: A medicinal Chemist’s perspective on multitargeting compounds. Journal of Medicinal Chemistry 62 (2): 420–444.

    Article  CAS  PubMed  Google Scholar 

  44. Morphy, R., and Z. Rankovic. 2005. Designed multiple ligands. An emerging drug discovery paradigm. Journal of Medicinal Chemistry 48 (21): 6523–6543.

    Article  CAS  PubMed  Google Scholar 

  45. Tonge, P. 2018. Drug–target kinetics in drug discovery. ACS Chemical Neuroscience 9 (1): 29–39.

    Article  CAS  PubMed  Google Scholar 

  46. Floris, M., S. Olla, D. Schlessinger, and F. Cucca. 2018. Genetic-driven Druggable target identification and validation. Trends in Genetics 34 (7): 558–570.

    Article  CAS  PubMed  Google Scholar 

  47. Cascante, M., L. Boros, B. Comin-Anduix, P. de Atauri, J. Centelles, and P. Lee. 2002. Metabolic control analysis in drug discovery and disease. Nature Biotechnology 20 (3): 243–249.

    Article  CAS  PubMed  Google Scholar 

  48. Saavedra, E., Z. Gonzalez-Chavez, R. Moreno-Sanchez, and P. Michels. 2018. Drug target selection for Trypanosoma cruzi metabolism by metabolic control analysis and kinetic modeling. Current Medicinal Chemistry 25: 1–19.

    Article  Google Scholar 

  49. Yang, K., W. Ma, H. Liang, Q. Ouyang, C. Tang, and L. Lai. 2007. Dynamic simulations on the arachidonic acid metabolic network. PLoS Computational Biology 3 (3): e55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Morphy, R., C. Kay, and Z. Rankovic. 2004. From magic bullets to designed multiple ligands. Drug Discovery Today 9 (15): 641–651.

    Article  CAS  PubMed  Google Scholar 

  51. Hopkins, A., G. Keserü, P. Leeson, D. Rees, and C. Reynolds. 2014. The role of ligand efficiency metrics in drug discovery. Nature Reviews. Drug Discovery 13 (2): 105–121.

    Article  CAS  PubMed  Google Scholar 

  52. Walles, M., A. Connor, and D. Hainzl. 2018. ADME and safety aspects of non- cleavable linkers in drug discovery and development. Current Topics in Medicinal Chemistry 17 (32): 3463–3475.

    Article  CAS  Google Scholar 

  53. Schmidt, J., M. Rotter, T. Weiser, S. Wittmann, L. Weizel, A. Kaiser, J. Heering, T. Goebel, C. Angioni, M. Wurglics, A. Paulke, G. Geisslinger, A. Kahnt, D. Steinhilber, E. Proschak, and D. Merk. 2017. A dual modulator of Farnesoid X receptor and soluble epoxide hydrolase to counter nonalcoholic steatohepatitis. Journal of Medicinal Chemistry 60 (18): 7703–7724.

    Article  CAS  PubMed  Google Scholar 

  54. Haupt, V., S. Daminelli, and M. Schroeder. 2013. Drug promiscuity in PDB: Protein binding site similarity is key. PLoS One 8 (6): e65894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barelier, S., T. Sterling, M. O’Meara, and B. Shoichet. 2015. The recognition of identical ligands by unrelated proteins. ACS Chemical Biology 10 (12): 2772–2784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Keiser, M., B. Roth, B. Armbruster, P. Ernsberger, J. Irwin, and B. Shoichet. 2007. Relating protein pharmacology by ligand chemistry. Nature Biotechnology 25 (2): 197–206.

    Article  CAS  PubMed  Google Scholar 

  57. Ehrt, C., T. Brinkjost, and O. Koch. 2016. Impact of binding site comparisons on medicinal chemistry and rational molecular design. Journal of Medicinal Chemistry 59 (9): 4121–4151.

    Article  CAS  PubMed  Google Scholar 

  58. Bellera, C.L., M.L. Sbaraglini, L.N. Alberca, J.I. Alice, and A. Talevi. 2019. In silico modeling of FDA-approved drugs for discovery of therapies against neglected diseases: A drug repurposing approach. In In silico drug design, ed. K. Roy, 1st ed., 625–648. Academic Press, London, UK.

    Google Scholar 

  59. Hu, Y., and J. Bajorath. 2010. Polypharmacology directed compound data mining: Identification of promiscuous chemotypes with different activity profiles and comparison to approved drugs. Journal of Chemical Information and Modeling 50 (12): 2112–2118.

    Article  CAS  PubMed  Google Scholar 

  60. Morphy, R., and Z. Rankovic. 2006. The physicochemical challenges of designing multiple ligands. Journal of Medicinal Chemistry 49 (16): 4961–4970.

    Article  CAS  PubMed  Google Scholar 

  61. Ma, X., Z. Shi, C. Tan, Y. Jiang, M. Go, B. Low, and Y. Chen. 2010. In-silico approaches to multi-target drug discovery. Pharmaceutical Research 27 (5): 739–749.

    Article  CAS  PubMed  Google Scholar 

  62. Handler, N. 2017. Pharmacophore generation for multiple ligands. In Drug selectivity: An evolving concept in medicinal chemistry, ed. N. Handler and H. Buschmann, 1st ed., 275–312. Weinheim: Wiley-VCH Verlag GmbH & Co.

    Chapter  Google Scholar 

  63. Sindhu, T., and P. Srinivasan. 2015. Identification of potential dual agonists of FXR and TGR5 using e-pharmacophore based virtual screening. Molecular BioSystems 11 (5): 1305–1318.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alberca, L.N., Talevi, A. (2020). The Efficiency of Multi-target Drugs: A Network Approach. In: Bizzarri, M. (eds) Approaching Complex Diseases. Human Perspectives in Health Sciences and Technology, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-32857-3_3

Download citation

Publish with us

Policies and ethics