Skip to main content

The Paulus–Rozenfeld–Thompson Graph on 26 Vertices Revisited and Related Combinatorial Structures

  • Conference paper
  • First Online:
Isomorphisms, Symmetry and Computations in Algebraic Graph Theory (WAGT 2016)

Abstract

This paper deals with the strongly regular graph T, having parameters (26, 10, 3, 4) and the largest possible automorphism group \(G=\mathrm {Aut}(T)\) of order 120. The group G in its action on the vertex set of T has two orbits of length 20 and 6. Many special features of the graph T and its group G make it a remarkable object in algebraic graph theory. The presentation, arranged in the style of a tutorial, describes the graph T from many viewpoints of mathematics and computer algebra. Special attention is paid to the links of T with such classical structures as the Petersen graph, semi-icosahedron, icosahedron, dodecahedron, two-graphs on 26 points, Paley graphs, inversive plane and generalized quadrangles of order 5 and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.M. Adel’son-Vel’skii, B.Ju. Weisfeiler, A.A. Leman, I.A. Faradžev, An example of a graph which has no transitive group of automorphisms. (Russian) Dokl. Akad. Nauk SSSR 185, 975–976 (1969)

    Google Scholar 

  2. V.L. Arlazarov, A.A. Leman, M.Z. Rosenfeld, Computer aided construction and analysis of graphs with 25, 26 and 29 vertices. (Russian). Moscow, IPU (1975)

    Google Scholar 

  3. ATLAS of Finite Group Representations - Version 3.2., http://brauer.maths.qmul.ac.uk/Atlas/

  4. L. Babel, I.V. Chuvaeva, M. Klin, D.V. Pasechnik, Algebraic combinatorics in mathematical chemistry. Methods and algorithms. II. Program implementation of the Weisfeiler-Leman algorithm, http://www.arxiv.org/abs/1002.1921

  5. J.C. Baez, Home page, http://math.ucr.edu/home/baez/. Accessed June 2018

  6. R.A. Bailey, Association Schemes. Designed Experiments, Algebra and Combinatorics. Cambridge Studies in Advanced Mathematics, vol. 84. (Cambridge University Press, Cambridge, 2004), pp. xviii+387

    Google Scholar 

  7. E. Bannai, T. Ito, Algebraic Combinatorics: I. Association Schemes (The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984)

    MATH  Google Scholar 

  8. A. Betten, M. Klin, R. Laue, A. Wassermann, Graphical \(t\)-designs via polynomial Kramer-Mesner matrices. Discrete Math. 197(198), 83–109 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. N.L. Biggs, Distance-regular Graphs with Diameter Three. Algebraic and geometric combinatorics, in North-Holland Mathematics Studies, vol. 65 (1982), pp. 69–80

    Google Scholar 

  10. N.L. Biggs, The Icosian calculus of today. Proc. R. Irish Acad. 95A(Supplement), 23–34 (1995)

    MathSciNet  MATH  Google Scholar 

  11. R.C. Bose, Strongly regular graphs, partial geometries and partially balanced designs. Pac. J. Math. 13, 389–419 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  12. R.C. Bose, T. Shimamoto, Classification and analysis of partially balanced incomplete block designs with two associate classes. J. Am. Stat. Assoc. 47, 151–184 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  13. A.E. Brouwer, home page: www.win.tue.nl/~aeb

  14. A.E. Brouwer, Classification of small (0,2)-graphs. J. Combin. Theory A 113, 1636–1645 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. A.E. Brouwer, W. Haemers, Spectra of Graphs (Springer, Berlin, 2012)

    Book  MATH  Google Scholar 

  16. A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance Regular Graphs (Springer, Berlin, 1989)

    Book  MATH  Google Scholar 

  17. R.H. Bruck, Finite nets II. Uniqueness and imbedding. Pac. J. Math. 13, 421–457 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  18. R.H. Bruck, Finite nets. I. Numerical invariants. Canad. J. Math. 3, 94–107 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Buekenhout, M. Parker, The number of nets of the regular convex polytopes in dimension \(\le 4\). Discrete Math. 186(1–3), 69–94 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. P.J. Cameron, blog, https://cameroncounts.wordpress.com/2018/07/03/

  21. P.J. Cameron, Permutation Groups. London Mathematical Society Student Texts, vol. 45 (Cambridge University Press, Cambridge, 1999), p. x+220

    Google Scholar 

  22. P.J. Cameron, J.H. van Lint, Designs, Graphs, Codes and Their Links (Cambridge University Press, Cambridge, 1991), p. x+240

    Google Scholar 

  23. P.J. Cameron, Two remarks on Steiner systems. Geom. Dedicata 4, 403–418 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  24. L.C. Chang, Association schemes of partially balanced block designs with parameters \(v = 28\), \(n_1 = 12\), \(n_2 = 15\) and \(p_{11}^2 = 4\). Sci. Record 4, 12–18 (1960)

    Google Scholar 

  25. Y. Chen, The Steiner systems \(S(3,6,26)\). J. Geom. 2, 7–28 (1972)

    Google Scholar 

  26. W.H. Clatworthy, Tables of Two-associate Partially Balanced Designs (National Bureau of Standards, Washington D.C., 1973)

    MATH  Google Scholar 

  27. C.J. Colbourn, A. Rosa, Triple Systems (Clarendon Press, Oxford, 1999)

    MATH  Google Scholar 

  28. Conference in Algebraic Graph Theory: Symmetry vs. Regularity, (the first 50 years since Weisfeiler-Leman stabilization), WL2018, July 1–7, 2018, Pilsen, Czech Republic, https://www.iti.zcu.cz/wl2018/index.html

  29. J.H. Conway, A. Hulpke, J. McKay, On transitive permutation groups. LMS J. Comput. Math. 1, 1–8 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. D.G. Corneil, R.A. Mathon, Algorithmic techniques for the generation and analysis of strongly regular graphs and other combinatorial configurations. Algorithmic aspects of combinatorics (Conf., Vancouver Island, B.C., Ann. Discrete Math. 2(1978), pp. 1–32 (1976)

    Google Scholar 

  31. H.S.M. Coxeter, A symmetrical arrangement of eleven hemi-Icosahedra, in North-Holland Mathematics Studies, vol. 87(C) (1984), pp. 103–114

    Google Scholar 

  32. H.S.M. Coxeter, Regular Polytopes, 3rd edn. (Dover Publications, USA, 1973)

    MATH  Google Scholar 

  33. H.S.M. Coxeter, W.O.J. Moser, Generators and Relations for Discrete Groups, 4th edn. (Springer, Berlin, 1980)

    Book  MATH  Google Scholar 

  34. P. Dembowski, Finite Geometries (Springer, Heidelberg, 1968)

    Book  MATH  Google Scholar 

  35. R.H.F. Denniston, Uniqueness of the inversive plane of order 5. Manuscr. Math. 8, 11–19 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  36. J.D. Dixon, B. Mortimer, Permutation Groups. Graduate Texts in Mathematics, vol. 163 (Springer, New York, 1996), p. xii+346

    Book  MATH  Google Scholar 

  37. A. Duval, A directed version of strongly regular graphs. J. Combin. Theory Ser. A 47, 71–100 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. D. Epple, M. Klin, Some Strongly Regular Graphs on  \(p^2+1\)  Vertices  \(p\in \{3,5,7,11\}\)  and Related Structures. Paper in preparation

    Google Scholar 

  39. M. Erickson, S. Fernando, W.H. Haemers, D. Hardy, J. Hemmeter, Deza graphs: a generalization of strongly regular graphs. J. Combin. Designs 7, 395–405 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. I.A. Faradžev, Constructive Enumeration of Combinatorial Objects. Algorithmic studies in combinatoric (Russian), vol. 185 (Nauka, Moscow, 1978), pp. 3–11

    Google Scholar 

  41. I.A. Faradžev, M. Klin, Computer package for computation with coherent configurations, in Proceedings ISSAC-91, ed. by S.M. Watt (ACM Press, Bonn, 1991), pp. 219–223

    Google Scholar 

  42. I.A. Faradžev, M.H. Klin, M. Muzichuk, Cellular rings and groups of automorphisms of graphs, in Investigations in algebraic theory of combinatorial objects, ed. by I.A. Faradžev, A.A. Ivanov, M.H. Klin, A.J. Woldar (Kluwer Academic Publishers, Dordrecht, 1994), pp. 1–152

    Chapter  MATH  Google Scholar 

  43. F. Fiedler, M. Klin, M. Muzychuk, Small vertex-transitive directed strongly regular graphs. Discrete Math. 255, 87–115 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. P.H. Fisher, T. Pentilla, Ch. Praeger, G. Royle, Inversive planes of odd order. Eur. J. Combin. 10, 331–336 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  45. L.L. Foster, On the symmetry group of the dodecahedron. Math. Mag. 63(2), 106–107 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  46. GAP - Groups, Algorithms, Programming—A System for Computational Discrete Algebra, www.gap-system.org

  47. C.D. Godsil, G. Royle, Algebraic Graph Theory (Springer, New York, 2001)

    Google Scholar 

  48. R.W. Gray, home page, http://www.rwgrayprojects.com. Accessed December 2018

  49. K. Gray, A.P. Street, Two regular solids holding the twelve \((6,3,2)\)-designs. Bull. Inst. Combin. Appl. 57, 53–59 (2009)

    MathSciNet  MATH  Google Scholar 

  50. R. Grimaldi, Discrete and Combinatorial Mathematics, 5th edn. (2007)

    Google Scholar 

  51. Ya.Yu. Gol’fand, A.V. Ivanov, M. Klin, Amorphic Cellular Rings, in Investigations in Algebraic Theory of Combinatorial Objects, ed. by I.A. Faradžev et al. (Kluwer Academic Publishers, Dordrecht, 1994), pp. 167–186

    Chapter  Google Scholar 

  52. J.L. Gross, T.W. Tucker, Topological Graph Theory (Wiley, New York, 1987)

    MATH  Google Scholar 

  53. Š. Gyürki, M. Klin, M. Ziv-Av, WL-Logo, https://www.iti.zcu.cz/wl2018/

  54. M. Hall Jr., The Theory of Groups. Reprinting of the 1968 edition (Chelsea Publishing Co., New York, 1976), p. xiii+434

    Google Scholar 

  55. A. Hanaki, I. Miyamoto, Tables of Homogeneous Coherent Configurations, http://kissme.shinshu-u.ac.jp/as/

  56. F. Harary, Graph Theory (Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park, Calif.-London, 1969), p. ix+274

    Google Scholar 

  57. A. Heinze, M. Klin, Loops, Latin squares and strongly regular graphs: An algorithmic approach via algebraic combinatorics, in Algorithmic Algebraic Combinatorics and Gröbner Bases, ed. by M. Klin et al. (Springer, Berlin, 2009), pp. 3–65

    Chapter  MATH  Google Scholar 

  58. D.G. Higman, Coherent configurations. I. Rend. Sem. Mat. Univ. Padova 44, 1–25 (1970)

    Google Scholar 

  59. J.W.P. Hirschfeld, Projective Geometries over Finite Fields, 2nd edn., Oxford Mathematical Monographs (Clarendon Press, Oxford, 1998)

    MATH  Google Scholar 

  60. D.A. Holton, J. Sheehan, The Petersen Graph (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  61. T.C. Holyoke, On the structure of multiply transitive permutation groups. Am. J. Math. 4, 787–796 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  62. B. Hopkins, Hamiltonian paths on platonic graphs. Int. J. Math. Math. Sci. 29–32, 1613–1616 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  63. D.R. Hughes, F.C. Piper, Design Theory (Cambridge University Press, Cambridge, 1985)

    Book  MATH  Google Scholar 

  64. Q.M. Husain, On the totality of the solutions for the symmetrical incomplete block designs: \(\lambda =2\), \(k=5\) or \(6\). Sankhya 7, 204–208 (1945)

    MathSciNet  MATH  Google Scholar 

  65. A.A. Ivanov, Construction with the aid of a computer of some new automorphic graphs, in “Air Physics and Applied Mathematics” (Moscow, MPhTI, 1981), pp. 144–146 (in Russian)

    Google Scholar 

  66. A.A. Ivanov, M.H. Klin, S.V. Tsaranov, S.V. Shpectorov, On the problem of computing subdegrees of a transitive permutation group. UMN 6, 115–116 (1983). (in Russian)

    Google Scholar 

  67. G.A. Jones, Paley and the Paley Graphs, arXiv:1702.00285

  68. G.A. Jones, Permutation Groups (Theory and Applications) (Belianum, Vydavatelstvo Univerzity Mateja Bela, Banská Bystrica, 2015), p. viii+84

    Google Scholar 

  69. G.A. Jones, M. Ziv-Av, Petrie duality and the Anstee-Robertson graph. Symmetry 7, 2206–2223 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  70. A. Kerber, Applied Finite Group Actions, Algorithms and Combinatorics, vol. 19, 2nd edn. (Springer, New York, 1999)

    Google Scholar 

  71. A. Kerber, R. Laue, M. Meringer, Ch. Rücker, E. Schymanski, Mathematical Chemistry and Chemoinformatics: Structure Generation, Elucidation and Quantitative Structure-Property Relationships (De Gruyter, 2014)

    Google Scholar 

  72. M.Kh. Klin, I.A. Faradzhev, The method of V-rings in the theory of permutation groups and its combinatoric applications. Investigations in Applied Graph Theory (Russian) (Nauka Sibirsk. Otdel., Novosibirsk, 1986), pp. 59–97

    Google Scholar 

  73. B. Kim, Mappings which preserve regular dodecahedrons. Int. J. Math. Math. Sci. 31(4), 515–522 (2006)

    Google Scholar 

  74. M. Klin, Š. Gyürki, Selected Topics from Algebraic Graph Theory (Belianum, Vydavatelstvo Univerzity Mateja Bela, Banská Bystrica, 2015), p. xi+209

    Google Scholar 

  75. M. Klin, I. Kovács, Automorphism groups of rational circulant graphs. Electron. J. Combin. 19(1), Paper 35, 52 pp (2012)

    Google Scholar 

  76. M. Klin, A. Munemasa, M. Muzychuk, P.H. Zieschang, Directed Strongly Regular Graphs Via Coherent (cellular) Algebras. Preprint Kyushu-MPS-1997-12 (Kyushu University, 1997)

    Google Scholar 

  77. M. Klin, C. Pech, S. Reichard, A. Woldar, M. Ziv-Av., Examples of computer experimentation in algebraic combinatorics. Ars Math. Contemp. 3 (2), 237–258 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  78. M.H. Klin, S. Reichard, A.J. Woldar, Siamese Combinatorial Objects via Computer Algebra Experimentation, in Algorithmic algebraic combinatorics and Gröbner bases (Springer, Berlin, 2009), pp. 67–112

    Chapter  Google Scholar 

  79. M. Klin, C. Rücker, G. Rücker, G. Tinhofer, Algebraic combinatorics in mathematical chemistry. Methods and algorithms. I. Permutation groups and coherent (cellular) algebras. MATCH 40, 7–138 (1999)

    Google Scholar 

  80. M. Klin, M. Ziv-Av, Enumeration of Schur rings over the group \(A_5\), in Computer algebra in scientific computing. Lecture Notes in Computer Science, vol. 8136 (Springer, Berlin, 2013), pp. 219–230

    Chapter  Google Scholar 

  81. MCh. Klin, R. Pöschel, K. Rosenbaum, Angewandte Algebra für Mathematiker und Informatiker (Vieweg and Sohn, Braunschweig, 1988)

    Book  MATH  Google Scholar 

  82. M. Klin, A. Munemasa, M. Muzychuk, P.H. Zieschang, Directed strongly regular graphs obtained from coherent algebras. Linear Algebra Appl. 377, 83–109 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  83. M. Klin, S. Reichard, A. Woldar, Siamese objects, and their relation to color graphs, association schemes and Steiner designs. Bull. Belg. Math. Soc. Simon Stevin 12(5), 845–857 (2005)

    MathSciNet  MATH  Google Scholar 

  84. M.H. Klin, D.M. Mesner, A.J. Woldar, A combinatorial approach to transitive extensions of generously unitransitive permutation groups. J. Combin. Des. 18(5), 369–391 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  85. M. Klin, N. Kriger, A. Woldar, On the existence of self-complementary and non-self-complementary strongly regular graphs with Paley parameters. J. Geom. 107(2), 329–356 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  86. J. Lauri, R. Scapellato, Topics in Graph Automorphisms and Reconstruction, 2nd edn. (Cambridge University Press, Cambridge, 2016)

    Google Scholar 

  87. F. Levstein, D. Penazzi, The Terwilliger algebra of the dodecahedron, (English summary). Rev. Un. Mat. Argentina 45(2), 11–20 (electronic) (2004)

    Google Scholar 

  88. E. Lord, Symmetry and Pattern in Projective Geometry (Springer, London, 2013)

    Book  MATH  Google Scholar 

  89. A. Malnič, D. Marušič, P. Šparl, On strongly regular bicirculants. Eur. J. Combin. 28(3), 891–900 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  90. R. Mathon, 3-class association schemes, in Proceedings of the Conference on Algebraic Aspects of Combinatorics (University of Toronto, Toronto, Ont., 1975), pp. 123–155. Congressus Numerantium, No. XIII, Utilitas Math., Winnipeg, Man., 1975

    Google Scholar 

  91. B.D. McKay, Nauty user’s guide, ver. 1.5, Technical Report TR-CS-90-02 (Computer Science Department, Australian National University, 1990)

    Google Scholar 

  92. M. Mulder, \((0,\lambda )\)-graphs and \(n\)-cubes. Disc. Math. 28, 179–188 (1979)

    Article  MATH  Google Scholar 

  93. D.V. Pasechnik, Skew-symmetric association schemes with two classes and strongly regular graphs of type \(L_{2n-1}(4n-1)\). Interactions between algebra and combinatorics. Acta Appl. Math. 29(1–2), 129–138 (1992)

    Google Scholar 

  94. A.J.L. Paulus, Conference matrices and graphs of order 26, Technische Hogeschool Eindhoven. Report WSK 73/06, (Eindhoven, 1973), pp. I – IV, 0–89

    Google Scholar 

  95. S.E. Payne, J.A. Thas, Finite Generalized Quadrangles, Research Notes in Mathematics, vol. 110. Pitman (Advanced Publishing Program, Boston, MA, 1984), p. vi+312

    Google Scholar 

  96. M.Z. Rozenfeld, The construction and properties of certain classes of strongly regular graphs. Uspehi Mat. Nauk 28, 197–198 (1973)

    MathSciNet  Google Scholar 

  97. A. Rudvalis, \((v, k,\lambda )\)-graphs and polarities of \((v, k,\lambda )\)-designs. Math Z. 120, 224–230 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  98. J.J. Seidel, Geometry and Combinatorics. Selected Works of J.J. Seidel Edited and with a preface by D. G. Corneil and R. Mathon (Academic Press, Inc., Boston, MA, 1991), p. xix+410

    Google Scholar 

  99. J.J. Seidel, On two-graphs and Shult’s characterization of symplectic and orthogonal geometries over \(GF(2)\). T.H.-Report, No. 73-WSK-02 (Department of Mathematics, Technological University Eindhoven, Eindhoven, 1973), p. i+25

    Google Scholar 

  100. S.S. Shrikhande, The uniqueness of the \(L_2\) association scheme. Ann. Math. Statist. 30, 781–798 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  101. S.S. Shrikhande, V.N. Bhat, Nonisomorphic solutions of pseudo-(3, 5, 2) and pseudo-(3, 6, 3) graphs. Ann. N. Y. Acad. Sci. 175, 331–350 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  102. S.S. Shrikhande, V.N. Bhat, Graphs derivable from \(L_3(5)\) graphs. Sankhya Ser. A 33, 315–350 (1971)

    MathSciNet  MATH  Google Scholar 

  103. S.S. Shrikhande, V.N. Bhat, Seidel-equivalence in \(LB_3(6)\) graphs. Aequationes Math. 8, 271–280 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  104. E. Shult, Supplement to the “Graph Extension Theorem” (University of Florida, Gainesville, Fla. (mimeographic notes), 1971), pp. 1–100

    Google Scholar 

  105. E. Shult, The graph extension theorem. Proc. Am. Math. Soc. 33, 278–284 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  106. L.H. Soicher, GRAPE: A system for computing with graphs and groups, Groups and computation (New Brunswick, 1991), DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 11, 287–291; Am. Math. Soc. (Providence, RI, 1993)

    Google Scholar 

  107. E. Spence, Two-graphs, in Handbook of design and analysis of experiments, ed. by A. Dean, M. Morris, J. Stufken, D. Bingham (Chapman & Hall/CRC Handbooks of Modern Statistical Methods. CRC Press, Boca Raton, FL, 2015), p. xix+940; pp. 875–882

    Google Scholar 

  108. H. Stachel, On the tetrahedra in the dodecahedron. KoG 4, 5–10 (1999)

    MathSciNet  MATH  Google Scholar 

  109. Z.G. Sun, A strong \((10,3,4)\) regular graph. Kexue Tongbao (English Ed.) 28(3), 298–300 (1983)

    MathSciNet  Google Scholar 

  110. D.B. Surowski, Stability of arc-transitive graphs. J. Graph Theory 38(2), 95–110 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  111. D.B. Surowski, Automorphism groups of certain unstable graphs. Math. Slovaca 53(3), 215–232 (2003)

    MathSciNet  MATH  Google Scholar 

  112. D.M. Thompson, Design constructibility: strongly regular graphs and block designs, Ph.D. dissertation (University of Arizona, 1979)

    Google Scholar 

  113. D.M. Thompson, Eigengraphs: constructing strongly regular graphs with block designs. Utilitas Math. 20, 83–115 (1981)

    MathSciNet  MATH  Google Scholar 

  114. Boris Weisfeiler (ed.), On Construction and Identification of Graphs, vol. 558. Lecture Notes in Mathematics (Springer, Berlin, 1976)

    Google Scholar 

  115. B. Weisfeiler, A.A. Leman, A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-Techn. Inform. Ser. 2, 9 (1968)

    Google Scholar 

  116. H. Wielandt, Group Theory, in Mathematische Werke/Mathematical works, vol. 1, ed. by B. Huppert, H. Schneider (Walter de Gruyter & Co., Berlin, 1994)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the contribution of the Scientific Grant Agency of the Slovak Republic (VEGA) under the grant 1/0988/16. MK gratefully recalls his communication with late Jaap Seidel and Ernie Shult, which was crucial for the shaping of his vision of the theory of two-graphs. He is also much obliged to all late and alive members of the former Moscow group for a fruitful communication. Special thanks go in this direction to Igor Faradžev, the creator of the program part of COCO. Support of Christian Pech, Sven Reichard, as well as of Dennis Epple was very helpful and efficient. We are much obliged to Andries Brouwer, Peter Cameron and Gareth Jones for communications, which were supporting spirit of this project. We thank also Rosemary Bailey, Katie Brodhead, Willem Haemers, Josef Lauri, Mikhail Muzychuk, Andy Woldar and Yaokun Wu for helpful remarks. Personal attention of Don Thompson was crucial for the start of the project. The initial impulse in the creation of the paper came from Sasha Ivanov, Ján Karabáš, Roman Nedela, Akihiro Munemasa, all our partners in the planning and running the event WL 2018. Finally, the authors are pleased to thank Jozef Širáň for his attention to this paper, as well as an anonymous referee for a very enthusiastic positive evaluation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Klin .

Editor information

Editors and Affiliations

Supplements

Supplements

See Tables 15, 16, 17 and 18

Table 15 130 circles in \(\mathcal M(5)\)
Table 16 Structure constants of \(\mathcal M\): the element in the jth row and kth column in the matrix \(P_i\) corresponds to constant \(p_{i,j}^k\)
Table 17 Main data about subgroups of \(\mathrm {Aut}(T)\)
Table 18 List of generators appearing in Table 17

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gyürki, Š., Klin, M., Ziv-Av, M. (2020). The Paulus–Rozenfeld–Thompson Graph on 26 Vertices Revisited and Related Combinatorial Structures. In: Jones, G., Ponomarenko, I., Širáň, J. (eds) Isomorphisms, Symmetry and Computations in Algebraic Graph Theory. WAGT 2016. Springer Proceedings in Mathematics & Statistics, vol 305. Springer, Cham. https://doi.org/10.1007/978-3-030-32808-5_4

Download citation

Publish with us

Policies and ethics