Skip to main content

Fast Nonparametric Mutual-Information-based Registration and Uncertainty Estimation

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image-Based Procedures (CLIP 2019, UNSURE 2019)

Abstract

In this paper we propose a probabilistic model for multi-modal non-linear registration that directly incorporates the mutual information (MI) metric into a demons-like optimization scheme. In contrast to uni-modal registration, where the demons algorithm uses repeated spatial filtering to obtain very fast solutions, MI-based registration currently relies on general-purpose optimization schemes that are much slower. The central idea of this work is to reformulate an often-used histogram interpolation technique in MI implementations as an explicit spatial interpolation step within a generative model. By exploiting the specific structure of this model, we obtain a dedicated and fast expectation-maximization optimizer with demons-like properties. This also leads to an easy-to-implement Gibbs sampler to infer registration uncertainty in high-dimensional deformation models, involving very little additional code and no external tuning. Preliminary experiments on multi-modal brain MRI images show that the proposed optimizer can be both faster and more accurate than the free-form deformation method implemented in Elastix. We also demonstrate the sampler’s ability to produce direct uncertainty estimates of MI-based registrations – to the best of our knowledge the first method in the literature to do so.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Med. Image Anal. 2(3), 243–260 (1998)

    Article  Google Scholar 

  2. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(1), S61–S72 (2009)

    Article  Google Scholar 

  3. Simpson, I.J., Schnabel, J.A., Groves, A.R., Andersson, J.L., Woolrich, M.W.: Probabilistic inference of regularisation in non-rigid registration. NeuroImage 59(3), 2438–2451 (2012)

    Article  Google Scholar 

  4. Simpson, I.J.A., et al.: A bayesian approach for spatially adaptive regularisation in non-rigid registration. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 10–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_2

    Chapter  Google Scholar 

  5. Simpson, I.J., et al.: Probabilistic non-linear registration with spatially adaptive regularisation. Med. Image Anal. 26(1), 203–216 (2015)

    Article  Google Scholar 

  6. Le Folgoc, L., Delingette, H., Criminisi, A., Ayache, N.: Sparse bayesian registration of medical images for self-tuning of parameters and spatially adaptive parametrization of displacements. Med. Image Anal. 36, 79–97 (2017)

    Article  Google Scholar 

  7. Risholm, P., Samset, E., Wells, W.: Bayesian estimation of deformation and elastic parameters in non-rigid registration. In: Fischer, B., Dawant, B.M., Lorenz, C. (eds.) WBIR 2010. LNCS, vol. 6204, pp. 104–115. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14366-3_10

    Chapter  Google Scholar 

  8. Risholm, P., Janoos, F., Norton, I., Golby, A.J., Wells III, W.M.: Bayesian characterization of uncertainty in intra-subject non-rigid registration. Med. Image Anal. 17(5), 538–555 (2013)

    Article  Google Scholar 

  9. Le Folgoc, L., Delingette, H., Criminisi, A., Ayache, N.: Quantifying registration uncertainty with sparse bayesian modelling. IEEE Trans. Med. Imaging 36(2), 607–617 (2016)

    Article  Google Scholar 

  10. Pursley, J., et al.: A Bayesian nonrigid registration method to enhance intraoperative target definition in image-guided prostate procedures through uncertainty characterization. Med. Phys. 39(11), 6858–6867 (2012)

    Article  Google Scholar 

  11. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  12. Modat, M., et al.: Fast free-form deformation using graphics processing units. Comput. Methods Prog. Biomed. 98(3), 278–284 (2010)

    Article  Google Scholar 

  13. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)

    Article  Google Scholar 

  14. Modat, M., Vercauteren, T., Ridgway, G.R., Hawkes, D.J., Fox, N.C., Ourselin, S.: Diffeomorphic demons using normalized mutual information, evaluation on multimodal brain MR images. In: SPIE Medical Imaging 2010: Image Processing, vol. 7623, p. 76232K (2010)

    Google Scholar 

  15. Lu, H., et al.: Multi-modal diffeomorphic demons registration based on point-wise mutual information. In: 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 372–375 (2010)

    Google Scholar 

  16. Risser, L., Heinrich, M.P., Rueckert, D., Schnabel, J.A.: Multi-modal diffeomorphic registration using mutual information: application to the registration of CT and MR pulmonary images. In: Proceedings MICCAI Workshop PIA (2011)

    Google Scholar 

  17. Janoos, F., Risholm, P., Wells, W.: Bayesian characterization of uncertainty in multi-modal image registration. In: Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds.) WBIR 2012. LNCS, vol. 7359, pp. 50–59. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31340-0_6

    Chapter  Google Scholar 

  18. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16(2), 187–198 (1997)

    Article  Google Scholar 

  19. Chen, H.M., Varshney, P.K.: Mutual information-based CT-MR brain image registration using generalized partial volume joint histogram estimation. IEEE Trans. Med. Imaging 22(9), 1111–1119 (2003)

    Article  Google Scholar 

  20. Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19(9), 1498–1507 (2007)

    Article  Google Scholar 

  21. Puonti, O., Iglesias, J.E., Van Leemput, K.: Fast and sequence-adaptive whole-brain segmentation using parametric bayesian modeling. NeuroImage 143, 235–249 (2016)

    Article  Google Scholar 

  22. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer Series in Statistics, 2nd edn. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  Google Scholar 

Download references

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skło-dowska-Curie grant agreement No 765148; the Danish Council for Independent Research under grant number DFF611100291; and the NIH National Institute on Aging under grant number R21AG050122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Agn .

Editor information

Editors and Affiliations

Appendix: Connection with MI-based registration

Appendix: Connection with MI-based registration

MI-based registration with partial volume interpolation can be interpreted as implicitly using the proposed generative model but with a different optimization strategy, in which EM is used to estimate \(\varvec{\theta }\) but not \(\mathbf {d}\). In particular, \(\mathbf {\widehat{d}}\) can also be estimated by optimizing \(\log p( \mathbf {d}, \varvec{\widehat{\theta }}_d| \mathbf {u})\) for \(\mathbf {d}\) with a general-purpose optimizer, where \( \varvec{\widehat{\theta }}_d= \arg \max _{ \varvec{\theta }} \log p( \mathbf {d}, \varvec{\theta }| \mathbf {u}) \) involves an inner optimization that for each \(\mathbf {d}\) estimates a matched \(\varvec{\widehat{\theta }}_d\) de novo from starting values \(\theta _{k,l}^0 = 1/L, \forall k,l\) by interleaving the EM Eqs. (2) and (3). When a flat prior \(p(\varvec{\theta }) \propto 1\) is used, the resulting effective registration criterion is then directly related to MI as follows:

$$\begin{aligned} \log p( \mathbf {d}, \varvec{\widehat{\theta }}_d| \mathbf {u}) \simeq I \mathrm {MI}( \mathbf {d}) + \log p( \mathbf {d}) + \mathrm {const}, \end{aligned}$$
(7)

where

$$\begin{aligned} \mathrm {MI}( \mathbf {d}) = \sum _{k=1}^K \sum _{l=1}^L n_{k,l} \log \frac{ n_{k,l} }{ n_k \, n_l } \quad \mathrm {with} \quad n_{k,l} = \frac{N_{k,l}}{I}, \,\, n_k = \sum _{l} n_{k,l}, \,\, n_l = \sum _k n_{k,l} \end{aligned}$$

is the MI criterion using partial volume interpolation [18, 19], in which joint histogram counts \(N_{k,l}\) are computed from fractional weights \( \bar{w}_{i,j}^d = \beta ^b\left( y_j - (x_i + d_i ) \right) \) as in Eq. (4). To see why Eq. (7) holds, we can also write \(\mathrm {MI}( \mathbf {d})\) as

$$\begin{aligned} \mathrm {MI}(\mathbf {d}) = \frac{1}{I} \sum _{i=1}^I \sum _{j=1}^J \bar{w}_{i,j}^d \log \bar{\theta }_{v_j,u_i}^d - \underbrace{\sum _{l=1}^L n_l \log n_l}_{\mathrm {const}} \quad \mathrm {with} \quad \bar{\theta }_{kl}^d = n_{k,l}/n_k , \end{aligned}$$
(8)

and, since \(\log p( \mathbf {d}, \varvec{\widehat{\theta }}_d) = Q( \mathbf {d}, \varvec{\widehat{\theta }}_d| \mathbf {d}, \varvec{\widehat{\theta }}_d)\),

$$\begin{aligned} \log p( \mathbf {d}, \varvec{\widehat{\theta }}_d| \mathbf {u}) - \log p(\mathbf {d})= & {} \sum _{i=1}^I \sum _{j=1}^J \widehat{w}_{i,j}^d \log \widehat{\theta }_{v_j,u_i}^d \nonumber \\&- \sum _i D_{KL}\left[ p( n_i | u_i, \mathbf {d}, \varvec{\widehat{\theta }}_d) \, \Vert \, p( n_i | \mathbf {d}) \right] + \mathrm {const}, \end{aligned}$$
(9)

where \(\widehat{w}_{i,j}^d = w_{i,j}( \mathbf {d}, \varvec{\widehat{\theta }}_d)\) and \(D_{KL}( . \Vert . )\) denotes the Kullback-Leibler (KL) divergence. Comparing Eqs. (8) and (9), and noting that \(\bar{w}_{i,j}^d\) and \(\varvec{\bar{\theta }}_d\) are precisely the weights and estimate of \(\varvec{\theta }\) in the first iteration of the inner EM optimization, MI-based registration can therefore be interpreted as making a “lazy” attempt at measuring \(\log p( \mathbf {d}, \varvec{\widehat{\theta }}_d)\), using only a single iteration in the inner optimization of \(\varvec{\widehat{\theta }}_d\), and ignoring the KL divergence between the prior and the posterior node assignment distributions. In the special case where \(p( n_i | \mathbf {d})\) takes only binary values \(\{0,1\}\), the approximation in Eq. (7) will be exact since the EM algorithm then immediately finds \(\varvec{\widehat{\theta }}_d\) in its first iteration and the KL divergence term vanishes. This will happen when B-splines of order \(b=0\) are used, or for first-order B-splines (\(b=1\)) whenever the image grids of \(\mathbf {u}\) and \(\mathbf {v}\) perfectly align.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agn, M., Van Leemput, K. (2019). Fast Nonparametric Mutual-Information-based Registration and Uncertainty Estimation. In: Greenspan, H., et al. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image-Based Procedures. CLIP UNSURE 2019 2019. Lecture Notes in Computer Science(), vol 11840. Springer, Cham. https://doi.org/10.1007/978-3-030-32689-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32689-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32688-3

  • Online ISBN: 978-3-030-32689-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics