Skip to main content

Combined Measurement Uncertainty for pH-Values Using Certified Reference Materials in Potentiometric Measurements with Glass Electrodes

  • Conference paper
  • First Online:
Reference Materials in Measurement and Technology (RMMT 2018)

Included in the following conference series:

  • 252 Accesses

Abstract

The practical realisation of pH-measurements with Harned-cell type equipment used for the measurement of primary standards as recommended by IUPAC is shortly outlined. In contrast to the Harned-cell without transference, the glass electrode with a junction is preferred and more practical for field laboratories. The combined measurement uncertainty is evaluated step by step in a systematic way according to ISO-GUM for a sample pH-value measured using a glass type electrode system, that was calibrated with two certified pH-reference material solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sørensen SPL, Enzymstudien II (1909) Über die Messung und die Bedeutung der Wasserstoffionenkonzentration bei enzymatischen Prozessen. Biochem Zeitschr 21:131–200, continuation 201–304

    Google Scholar 

  2. Buck RP, Rondinini S, Covington AK, Baucke FGK, Brett CMA, Camões MF, Milton MJT, Mussini T, Naumann R, Pratt KW, Spitzer P, Wilson GS (2001) Measurement of pH. Definition, standards, and procedures (IUPAC recommendations 2002). Working party on pH. Pure Appl Chem 74(11):2169–2200

    Article  CAS  Google Scholar 

  3. Spitzer P, Pratt KW (2011) The history and development of a rigorous metrological basis for pH measurements. J Solid State Electrochem 15:69–76

    Article  CAS  Google Scholar 

  4. Bates RG, Guggenheim EA (1960) Report on the standardization of pH and related terminology. Pure Appl Chem 1:163–168

    Article  CAS  Google Scholar 

  5. Archer DG, Wang P (1990) The dielectric constant of water and Debye-Hückel limiting law slopes. J Phys Chem Ref Data 19(2):371

    Article  CAS  Google Scholar 

  6. Tanaka M, Girard G, Davis R, Peuto A, Bignell N (2001) Recommended table for the density of water between 0 °C and 40 °C based on recent experimental reports. Metrologia 38:301–309

    Article  CAS  Google Scholar 

  7. Pitzer KS (1991) Activity coefficients in electrolyte solutions, 2nd edn. CRC Press, Boca-Raton. ISBN 0849354153

    Google Scholar 

  8. Berdat D, Andres H, Wunderli S (2009) Development of suitable ISE measurement procedures for SI-traceable chemical activity determination. Chimia 63(10):671–677

    Article  Google Scholar 

  9. Bastkowski F, Spitzer P, Eberhardt R, Adel B, Wunderli S, Berdat D, Andres H, Brunschwig O, Máriássy M, Fehér R, Demuth C, Gonzaga FB, Borges PP, da Silva Junior WB, Vospělová A, Vičarová M, Srithongtim S (2013) Pitzer ion activities in mixed electrolytes for calibration of ion-selective electrodes used in clinical chemistry. Accred Qual Assur 18:469–479

    Article  CAS  Google Scholar 

  10. Covington AK, Bates RG, Durst RA (1985) Definition of pH scales, standard reference values, measurement of pH and related terminolohgy. Pure Appl Chem 57(3):531–542

    Article  Google Scholar 

  11. Bates RG (1973) Determination of pH. Theory and practice, 2nd edn. Wiley, Hoboken. ISBN 0-471-05657-2

    Article  Google Scholar 

  12. Spitzer P, Wunderli S (2013) Handbook of reference electrodes. In: Inzelt G, Lewenstam A, Scholz F (eds) Chapter 5.1: Reference electrodes for aqueous solutions. The hydrogen electrode. Springer, Berlin

    Google Scholar 

  13. Leito I, Strauss L, Koort E, Pihl V (2002) Estimation of uncertainty of routine pH measurement. Accred Qual Assur 7:242–249

    Article  CAS  Google Scholar 

  14. Leito I, Kadis R (2010) Evaluation of residual liquid junction potential contribution to the uncertainty in pH measurement: a case study on low ionic strength natural waters. Anal Chim Acta 664(2):129–135

    Article  Google Scholar 

  15. Tauber G (2010) Industrielle pH-Messung – Beiträge der Temperatur zur Messunsicherheit. Tech Mess 77(3):150–155

    Article  CAS  Google Scholar 

  16. Tauber G (2009) Industrielle pH-Messung – Beiträge der Diffusionspotenziale zur Messunsicherheit. Tech Mess 76(6):308–316

    Article  CAS  Google Scholar 

  17. Wilhelm T, Pechstein T (2010) Einflüsse realer Einsatzbedingungen auf die pH-Messung mit Glaselektroden. Tech Mess 77(3):140–149

    Article  CAS  Google Scholar 

  18. Naumann R, Alexander-Weber Ch, Eberhardt R, Giera J, Spitzer P (2002) Traceability of pH measurements by glass electrode cells: performance characteristics of pH electrodes by multi-point calibration. Anal Bioanal Chem 374:778–786

    Article  CAS  Google Scholar 

  19. pH-Messung—pH-Messung von wässerigen Lösungen mit pH-Glaselektroden und Abschätzung der Messunsicherheit, DIN 19268 (2007)

    Google Scholar 

  20. Water quality—Determination of pH. ISO 10523 (2008) 2nd edn

    Google Scholar 

  21. Degner R (2009) pH-Messung, Der Leitfaden für Praktiker. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. ISBN 978-3-527-32359-3

    Google Scholar 

  22. Galster H (1990) pH-Messung, Grundlagen, Methoden, Anwendungen, Geräte, VCH-Verlagsgesellschaft. ISBN 3-527-27836-2

    Google Scholar 

  23. Spitzer P, Eberhardt R, Schmidt I, Sudmeier U (1996) Improved traceability of pH measurements. Fresenius J Anal Chem 356:178–181

    CAS  Google Scholar 

  24. Meinrath G, Spitzer P (2000) Uncertainties in determination of pH. Mikrochim Acta 135:155–168

    Article  CAS  Google Scholar 

  25. Schwabe K (1976) pH-Messtechnik, 4th edn. Verlag Theodor Steinkopff, Dresden

    Google Scholar 

  26. Schwabe K (1980) pH-Messung. Akademie-Verlag, Berlin

    Google Scholar 

  27. Spitzer P (2001) Traceable measurements of pH. Accredit Qual Assur 6:55–60

    Article  CAS  Google Scholar 

  28. Spitzer P, Adel B, Werner B, Jehnert D (2010) Zuverlässige Kalibrierung von pH-Messeinrichtungen. Tech Mess 77(3):156–161

    Article  CAS  Google Scholar 

  29. Meinrath G, Spitzer P (2001) Importance of traceable pH measurements in science and technology. In: 166th PTB-Seminar, PTB-ThEx-25, Physikalisch-Technische Bundesanstalt, Braunschweig u. Berlin. ISBN 3-89701-903-5

    Google Scholar 

  30. Bates RG, Popovych O (1981) The modern meaning of pH. CRC Crit Rev Anal Chem 10(3):247–278

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Wunderli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wunderli, S. (2020). Combined Measurement Uncertainty for pH-Values Using Certified Reference Materials in Potentiometric Measurements with Glass Electrodes. In: Medvedevskikh, S., Kremleva, O., Vasil’eva, I., Sobina, E. (eds) Reference Materials in Measurement and Technology. RMMT 2018. Springer, Cham. https://doi.org/10.1007/978-3-030-32534-3_23

Download citation

Publish with us

Policies and ethics