Skip to main content

Principles of Radiation Therapy for Hodgkin Lymphoma

  • Chapter
  • First Online:
Hodgkin Lymphoma

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

Abstract

Radiation therapy (RT) remains a major component of the successful treatment of Hodgkin lymphoma (HL), even in the era of improved systemic therapies. For decades, definitive radiation was used alone to cure the majority of patients with HL, and it is still the most effective single agent in the oncologic armamentarium for this disease. RT as a single modality remains the treatment of choice for patients with early-stage lymphocyte-predominant HL (LPHL) and for a subset of patients with classic HL who have contraindications to chemotherapy. Currently, most patients with HL are treated with combined-modality programs in which RT is given as consolidation after chemotherapy. As the role of RT has transformed over the years from a single modality into an important component of combined-modality therapy, the classic principles of RT fields, dose, and technique have fundamentally changed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3DCRT:

Three-dimensional conformal radiotherapy

ABVD:

Adriamycin (doxorubicin), bleomycin, vinblastine, dacarbazine

AP-PA:

Opposed anterior and posterior fields

ASCT:

Autologous stem cell transplantation

ASH:

American Society of Hematology

BEACOPP:

Bleomycin, etoposide, doxorubicin, cyclophosphamide, procarbazine, prednisone

BV:

Brentuximab vedotin

CR:

Complete response

CT:

Computed tomography

CTV:

Clinical target volume

CVRT:

Consolidation volume radiation therapy

DIBH:

Deep-Inspiration Breath Hold

EBVP:

Epirubicin, bleomycin, vinblastine, dacarbazine

EFS:

Event-free survival

EORTC:

European Organisation for Research and Treatment of Cancer

FFTF:

Freedom from treatment failure

GELA:

Groupe d’Études des Lymphomes Adultes

GHSG:

German Hodgkin Study Group

HL:

Hodgkin lymphoma

IFRT:

Involved-field radiation therapy

IMRT:

Intensity-modulated radiation therapy

INRT:

Involved-node radiation therapy

ISHL11:

International Symposium on Hodgkin Lymphoma 2018 meeting

ISRT:

Involved-site radiation therapy

LPHL:

Lymphocyte-predominant HL

MOP-BAP:

Mechlorethamine, vincristine, prednisone, bleomycin, doxorubicin, procarbazine

MOPP:

Mustargen, vincristine, procarbazine, prednisone

MSKCC:

Memorial Sloan Kettering Cancer Center

MTD:

Maximum tumor dimension

NCCN:

National Comprehensive Cancer Network

OS:

Overall survival

PET:

Positron emission tomography

PTV:

Planning target volume

RT:

Radiation therapy

STLI:

Subtotal lymphoid irradiation

TLI:

Total lymphoid irradiation

TSH:

Thyroid-stimulating hormone

References

  1. Lebow F (1996) Refining the management of Hodgkin’s disease. Oncology Times 1996:63

    Google Scholar 

  2. Hoppe RT, Advani R, Ai WZ et al (2018) National comprehensive cancer network guidelines: Hodgkin lymphoma, version 3.2018

    Google Scholar 

  3. Yahalom J (2009) Role of radiation therapy in Hodgkin’s lymphoma. Cancer J 15:155–160

    Article  PubMed  Google Scholar 

  4. Pusey W (1902) Cases of sarcoma and of Hodgkin’s disease treated by exposures to x-rays: a preliminary report. JAMA 38:166–169

    Article  Google Scholar 

  5. Senn N (1903) Therapeutical value of roentgen ray in treatment of pseudoleukemia. N Y Med J 77:665–668

    Google Scholar 

  6. Gilbert R (1925) La roentgentherapie de la granulomatose maligne. J Radiol Electrol 9:509–514

    Google Scholar 

  7. Peters M (1950) A study in survivals in Hodgkin’s disease treated radiologically. Am J Roentgenol 63:299–311

    Google Scholar 

  8. Kaplan H (1962) The radical radiotherapy of Hodgkin’s disease. Radiology 78:553–561

    Article  CAS  PubMed  Google Scholar 

  9. Specht L, Yahalom J, Illidge T et al (2014) Modern radiation therapy for Hodgkin lymphoma: field and dose guidelines from the international lymphoma radiation oncology group (ILROG). Int J Radiat Oncol Biol Phys 89(4):854–862. https://doi.org/10.1016/j.ijrobp.2013.05.005

    Article  PubMed  Google Scholar 

  10. Girinsky T, van der Maazen R, Specht L et al (2006) Involved-node radiotherapy (INRT) in patients with early Hodgkin lymphoma: concepts and guidelines. Radiother Oncol 79:270–277

    Article  PubMed  Google Scholar 

  11. Hodgson DC, Dieckmann K, Terezakis S et al (2015) Implementation of contemporary radiation therapy planning concepts for pediatric Hodgkin lymphoma: guidelines from the international lymphoma radiation oncology group. Pract Radiat Oncol 5(2):85–92

    Article  PubMed  Google Scholar 

  12. Brentuximab vedotin and combination chemotherapy in treating children and young adults with stage IIB or Stage IIIB-IVB Hodgkin lymphoma. (First posted June 18, 2014, last updated March 12, 2019). ClinicalTrials.gov Identifier: NCT02166463

  13. Nogova L, Reineke T, Eich HT et al (2005) Extended field radiotherapy, combined modality treatment or involved field radiotherapy for patients with stage IA lymphocyte-predominant Hodgkin’s lymphoma: a retrospective analysis from the German Hodgkin study group (GHSG). Ann Oncol 16(10):1683–1687

    Article  CAS  PubMed  Google Scholar 

  14. Wirth A, Yuen K et al (2005) Long-term outcome after radiotherapy alone for lymphocyte-predominant Hodgkin lymphoma: a retrospective multicenter study of the Australasian radiation oncology lymphoma group. Cancer 104:1221–1229

    Article  PubMed  Google Scholar 

  15. Chen RC, Chin MS, Ng AK et al (2010) Early-stage, lymphocyte-predominant Hodgkin’s lymphoma: patient outcomes from a large, single-institution series with long follow-up. J Clin Oncol 28:136–141

    Article  PubMed  Google Scholar 

  16. Schlembach PJ, Wilder RB et al (2002) Radiotherapy alone for lymphocyte-predominant Hodgkin’s disease. Cancer J 8:377–383

    Article  PubMed  Google Scholar 

  17. Sasse S, Klimm B, Gorgen H et al (2012) Comparing long-term toxicity and efficacy of combined modality treatment including extended- or involved-field radiotherapy in early-stage Hodgkin’s lymphoma. Ann Oncol 23(11):2953–2959

    Article  CAS  PubMed  Google Scholar 

  18. Engert A, Plutschow A, Eich HT et al (2010) Reduced treatment intensity in patients with early-stage Hodgkin’s lymphoma. N Engl J Med 363(7):640–652

    Article  CAS  PubMed  Google Scholar 

  19. Eich HT, Diehl V, Gorgen H et al (2010) Intensified chemotherapy and dose-reduced involved-field radiotherapy in patients with early unfavorable Hodgkin’s lymphoma: final analysis of the German Hodgkin study group HD11 trial. J Clin Oncol 28(27):4199–4206

    Article  PubMed  Google Scholar 

  20. Ferme C, Thomas J, Brice P et al (2017) ABVD or BEACOPPbaseline along with involved-field radiotherapy in early-stage Hodgkin lymphoma with risk factors: results of the European Organisation for Research and Treatment of Cancer (EORTC)-Groupe d’Etude des Lymphomes de l’Adulte(GELA) H9-U intergroup randomised trial. Eur J Cancer 81:45–55

    Article  PubMed  Google Scholar 

  21. Evens AM, Kostakoglu L (2014) The role of FDG-PET in defining prognosis of Hodgkin lymphoma for early-stage disease. Blood 124(23):3356–3364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Raemaekers JM, André MP, Federico M et al (2014) Omitting radiotherapy in early positron emission tomography-negative stage I/II Hodgkin lymphoma is associated with an increased risk of early relapse: clinical results of the preplanned interim analysis of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol 32(12):1188–1194. https://doi.org/10.1200/JCO.2013.51.9298

    Article  PubMed  Google Scholar 

  23. Radford J, Illidge T, Counsell N et al (2015) Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N Engl J Med 373(17):1598–1607

    Article  CAS  Google Scholar 

  24. Illidge T et al (2018) Maximum tumour dimension at baseline is associated wth event-free survival in PET negative patients with stage IA/IIA Hodgkin lymphoma in the UK NCRI RAPID trial. International symposium on Hodgkin lymphoma (ISHL11), 26–29 Oct 2018, Cologne

    Google Scholar 

  25. Andre MPE, Girinsky T, Federico M et al (2017) Early positron emission tomography response-adapted treatment in stage I and II Hodgkin lymphoma: final results of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol 35(16):1786–1794

    Article  CAS  PubMed  Google Scholar 

  26. Engert A et al (2018) Early-stage favorable HL: HD16. International symposium on Hodgkin lymphoma (ISHL11), 26–29 Oct 2018, Cologne

    Google Scholar 

  27. Johnson P, Federico M, Kirkwood A et al (2016) Adapted treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma. New Engl J Med 374(25):2419–2429

    Article  PubMed  Google Scholar 

  28. Meyer RM, Gospodarowicz MK, Connors JM et al (2012) ABVD alone versus radiation-based therapy in limited-stage Hodgkin’s lymphoma. N Engl J Med 366(5):399–408

    Article  CAS  PubMed  Google Scholar 

  29. Dann EJ, Bairey O, Bar-Shalom R et al (2017) Modification of initial therapy in early and advanced Hodgkin lymphoma, based on interim PET/CT is beneficial: a prospective multicenter trial of 355 patients. Br J Haematol 178(5):709–718

    Article  CAS  PubMed  Google Scholar 

  30. Straus DJ, Jung SH, Pitcher B et al (2018) CALGB 50604: a risk-adapted treatment of nonbulky early-stage Hodgkin lymphoma based on interim PET. Blood 132(10):1013–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Herbst C, Rehan FA et al (2009) Combined modality treatment improves tumor control and overall survival in patients with early stage Hodgkin lymphoma: a systematic review. Haematologica 95:494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blank O, von Tresckow B, Monsef I et al (2017) Chemotherapy alone versus chemotherapy plus radiotherapy for adults with early stage Hodgkin lymphoma. Cochrane Database Syst Rev 4:CD0071010

    Google Scholar 

  33. Loeffler M, Diehl V et al (1997) Dose-response relationship of complementary radiotherapy following four cycles of combination chemotherapy in intermediate-stage Hodgkin’s disease. J Clin Oncol 15:2275–2287

    Article  CAS  PubMed  Google Scholar 

  34. Skoetz N, Trelle S, Rancea M et al (2013) Effect of initial treatment strategy on survival of patients with advanced-stage Hodgkin’s lymphoma: a systematic review and network meta-analysis. Lancet Oncol 14(10):943–952

    Article  PubMed  Google Scholar 

  35. Aleman BM, Raemaekers JM et al (2003) Involved-field radiotherapy for advanced Hodgkin’s lymphoma. N Engl J Med 348:2396–2406

    Article  PubMed  Google Scholar 

  36. Laskar S, Gupta T et al (2004) Consolidation radiation after complete remission in Hodgkin’s disease following six cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine chemotherapy: is there a need? J Clin Oncol 22:62–68

    Article  CAS  PubMed  Google Scholar 

  37. Johnson PWM, Sydes MR, Hancock BW et al (2010) Consolidation radiotherapy in patients with advanced Hodgkin’s lymphoma: survival data from the UKLG LY09 randomized controlled trial. J Clin Oncol 28:3352–3359

    Article  PubMed  Google Scholar 

  38. Engert A, Haverkamp H, Kobe C et al (2012) Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. Lancet 379(9828):1791–1799

    Article  CAS  PubMed  Google Scholar 

  39. Gallamini A, Tarella C, Viviani S et al (2018) Early chemotherapy intensification with escalated BEACOPP in patients with advanced-stage Hodgkin lymphoma with a positive interim positron emission tomography/computed tomography scan after two ABVD cycles: long-term results of the GITIL/FIL HD 0607 trial. J Clin Oncol 36(5):454–462

    Article  CAS  PubMed  Google Scholar 

  40. Press OW, Li H, Schoder H et al (2016) US intergroup trial of response-adapted therapy for stage III to IV Hodgkin lymphoma using early interim Flurodeoxygluose-positron emission tomography imaging: southwest oncology group S0816. J Clin Oncol 34(17):2020–2027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ha CS et al (2018) Potential impact of consolidation radiation therapy for advanced Hodgkin lymphoma: a secondary modeling of SWOG S0816 with receiver operating characteristic analysis. American Society of hematology annual meeting, 1–4 Dec San Diego, CA

    Google Scholar 

  42. Poen JC, Hoppe RT et al (1996) High-dose therapy and autologous bone marrow transplantation for relapsed/refractory Hodgkin’s disease: the impact of involved field radiotherapy on patterns of failure and survival. Int J Radiat Oncol Biol Phys 36:3–12

    Article  CAS  PubMed  Google Scholar 

  43. Biswas T, Culakova E, Friedberg JW et al (2012) Involved field radiation therapy following high dose chemotherapy and autologous stem cell transplant benefits local control and survival in refractory or recurrent Hodgkin lymphoma. Radiother Oncol 103(3):367–372

    Article  PubMed  Google Scholar 

  44. Levis M, Piva C, Filippi AR et al (2017) Potential benefit of involved-field radiotherapy for patients with relapsed-refractory Hodgkin’s lymphoma with incomplete response before autologous stem cell transplantation. Clin Lymphoma Myeloma Leuk 17(1):14–22

    Article  PubMed  Google Scholar 

  45. Yahalom J, Gulati SC et al (1993) Accelerated hyperfractionated total-lymphoid irradiation, high-dose chemotherapy, and autologous bone marrow transplantation for refractory and relapsing patients with Hodgkin’s disease. J Clin Oncol 11:1062–1070

    Article  CAS  PubMed  Google Scholar 

  46. Moskowitz CH, Nimer SD et al (2001) A 2-step comprehensive high-dose chemoradiotherapy second-line program for relapsed and refractory Hodgkin’s disease: analysis by intent to treat and development of a prognostic model. Blood 97:617–623

    Article  Google Scholar 

  47. Moskowitz CH, Kewalramani T et al (2004) Effectiveness of high dose chemoradiotherapy and autologous stem cell transplantation for patients with biopsy-proven primary refractory Hodgkin’s disease. Br J Haematol 124:645–652

    Article  PubMed  Google Scholar 

  48. Rimner A, Lovie S, Hsu M et al (2017) Accelerated total lymphoid irradiation-containing salvage regimen for patietns with refractory and relapsed Hodgkin lymphoma: 20 years of experience. Int J Radiat Oncol Biol Phys 97(5):1066–1076

    Article  PubMed  PubMed Central  Google Scholar 

  49. Goodman KA, Riedel E et al (2008) Long-term effects of high dose chemotherapy and radiation for relapsed and refractory Hodgkin’s lymphoma. J Clin Oncol 26:5240–5247

    Article  PubMed  Google Scholar 

  50. Constine LS, Yahalom J, Ng AK et al (2018) The role of radiation therapy in patients with relapse and refractory Hodgkin lymphoma: guidelines from the international lymphoma radiation oncology group. Int J Radiat Oncol Biol Phys 100(5):1100–1118

    Article  PubMed  Google Scholar 

  51. Yahalom J, Mauch P (2002) The involved field is back: issues in delineating the radiation field in Hodgkin’s disease. Ann Oncol 13(Suppl 1):79–83

    Article  PubMed  Google Scholar 

  52. Kaplan HS, Rosenberg SA (1966) The treatment of Hodgkin’s disease. Med Clin North Am 50:1591–1610

    Article  CAS  PubMed  Google Scholar 

  53. ICRU. International Commission on Radiation Units and Measurements (1999) Prescribing, recording, and reporting photon therapy. Supplement to ICRU report 50. ICRU report 62

    Google Scholar 

  54. Girinsky T, Specht L, Ghalibafian M et al (2008) The conundrum of Hodgkin lymphoma nodes: to be or not to be included in the involved node radiation fields. The EORTC-GELA lymphoma group guidelines. Radiother Oncol 88:202–210

    Article  PubMed  Google Scholar 

  55. Maraldo MV, Aznar MC, Vogelius IR et al (2013) Involved node radiotherapy: an effective alternative in early stage Hodgkin lymphoma. Int J Radiat Oncol Biol Phys 85:1057–1065

    Article  PubMed  Google Scholar 

  56. Paumier A, Ghalibafian M, Beaudre A et al (2011) Involved-node radiotherapy and modern radiation treatment techniques in patients with Hodgkin lymphoma. Int J Radiat Oncol Biol Phys 80:199–205

    Article  PubMed  Google Scholar 

  57. Pinnix CC, Smith GL, Milgrom S et al (2015) Int J Radiat Oncol Biol Phys 92(1):175–182

    Article  PubMed  PubMed Central  Google Scholar 

  58. Van Nimwegen FA, Schaapveld M, Cutter DJ et al (2016) Radiation dose-response relationship for risk of coronary heart disease in survivors of Hodgkin lymphoma. J Clin Oncol 34(3):235–243

    Article  CAS  PubMed  Google Scholar 

  59. Bates JE, Howell RM, Liu Q et al (2019) Therapy-related cardiac risk in childhood cancer survivors: an analysis of the childhood cancer survivor study, JCO1801764. J Clin Oncol 2019. https://doi.org/10.1200/JCO/18/01764

  60. Hoppe BS, Bates JE, Mendenhall NP et al (2019) The meaningless meaning of mean heart dose in mediastinal lymphoma in the modern radiation therapy Era. Pract Radiat Oncol pii:s1879–8500(19)30279–6. https://doi.org/10.1016/j.prro.2019.​09.015 PMID:31586483

  61. Cutter DJ, Schaapveld M, Darby SC et al (2015) Risk of valvular heart disease after treatment for Hodgkin lymphoma. J Natl Cancer Inst 23:107(4)

    Google Scholar 

  62. Cella L, Conson M, Caterino M et al (2012) Thyroid V30 predicts radiation-induced hypothyroidism in patients treated with sequential chemo-radiotherapy for Hodgkin’s lymphoma. Int J Radiat Oncol Biol Phys 82(5):1802–1808

    Article  PubMed  Google Scholar 

  63. Travis LB, Hill DA, Dores GM et al (2003) Breast cancer following radiotherapy and chemotherapy among young women with Hodgkin disease. JAMA 290(4):465–475

    Article  PubMed  Google Scholar 

  64. Travis LB, Gospodarowicz M, Curtis RE et al (2002) Lung cancer following chemotherapy and radiotherapy for Hodgkin’s disease. J Natl Cancer Inst 94(3):182–192

    Article  PubMed  Google Scholar 

  65. Tukenova M, Guibout C, Hawkins M et al (2011) Radiaiton therapy and late mortality from second sarcoma, carcinoma, and hematological malignancies after a solid cancer in childhood. Int J Radiat Oncol Biol Phys 80(2):339–346

    Article  PubMed  Google Scholar 

  66. Bhatti P, Veiga LH, Ronckers CM et al (2010) Risk of second primary thyroid cancer after radiotherapy for a childhood cancer in a large cohort study: an update from the childhood cancer survivor study. Radiat Res 174(6):741–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nivolumab and Brentuximab vedotin in treating older patients with untreated Hodgkin lymphoma. (First posted May 2, 2016, last updated January 14, 2019). ClinicalTrials.gov Identifier: NCT02758717

  68. Brentuximab vedotin and nivolumab in treating participants with early stage classic Hodgkin lymphoma. (First posted October 19, 2018, last updated January 16, 2019). ClinicalTrials.gov Identifier: NCT03712202

  69. Kumar A, Casulo C, Yahalom J et al (2016) Brentuximab vedotin and AVD followed by involved-site radiotherapy in early stage, unfavorable risk Hodgkin lymphoma. Blood 128(11):1458–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang JC et al (2018) Brentuximab vedotin and AVD chemotherapy followed by reduced dose/volume radiotherapy in patients with early stage, unfavorable Hodgkin lymphoma. International symposium on Hodgkin lymphoma (ISHL11), 26–29 Oct, Cologne

    Google Scholar 

  71. Duhmke E, Franklin J et al (2001) Low-dose radiation is sufficient for the noninvolved extended-field treatment in favorable early-stage Hodgkin’s disease: long-term results of a randomized trial of radiotherapy alone. J Clin Oncol 19:2905–2914

    Article  CAS  PubMed  Google Scholar 

  72. Duhmke E, Diehl V et al (1996) Randomized trial with early-stage Hodgkin’s disease testing 30 Gy vs. 40 Gy extended field radiotherapy alone. Int J Radiat Oncol Biol Phys 36:305–310

    Article  CAS  PubMed  Google Scholar 

  73. Prosnitz LR, Farber LR, Fischer JJ et al (1976) Long term remissions with combined modality therapy for advanced Hodgkin’s disease. Cancer 37(6):2826–2833

    Article  CAS  PubMed  Google Scholar 

  74. Donaldson SS, Link MP (1987) Combined modality treatment with low-dose radiation and MOPP chemotherapy for children with Hodgkin’s disease. J Clin Oncol 5:742–749

    Article  CAS  PubMed  Google Scholar 

  75. Dharmarajan KV, Friedman DL, Schwartz CL et al (2015) Patterns of relapse from a phase 3 study of response-based therapy for intermediate-risk Hodgkin lymphoma (AHOD0031): a report from the Children’s Oncology Group. Int J Radiat Oncol Biol Phys 92(1):60–66

    Article  PubMed  Google Scholar 

  76. Ferme C, Eghbali H et al (2007) Chemotherapy plus involved-field radiation in early-stage Hodgkin’s disease. N Engl J Med 357:1916–1927

    Article  CAS  PubMed  Google Scholar 

  77. Sasse S, Brockelmann PJ, Goergen H et al (2017) Long-term follow-up of contemporary treatment in early-stage Hodgkin lymphoma: updated analyses of the German Hodgkin study group HD7, HD8, HD10, and HD11 trials. J Clin Oncol 35(18):1999–2007

    Article  CAS  PubMed  Google Scholar 

  78. Hodgson DC, Koh ES et al (2007) Individualized estimates of second cancer risks after contemporary radiation therapy for Hodgkin lymphoma. Cancer 110:2576–2586

    Article  PubMed  Google Scholar 

  79. Kuttesch JF Jr, Wexler LH et al (1996) Second malignancies after Ewing’s sarcoma: radiation dose-dependency of secondary sarcomas. J Clin Oncol 14:2818–2825

    Article  PubMed  Google Scholar 

  80. Koontz B, Kirkpatrick J et al (2006) Combined modality therapy versus radiotherapy alone for treatment of early stage Hodgkin disease: cure versus complications. J Clin Oncol 24:605–611

    Article  PubMed  Google Scholar 

  81. Salloum E, Doria R et al (1996) Second solid tumors in patients with Hodgkin’s disease cured after radiation or chemotherapy plus adjuvant low-dose radiation. J Clin Oncol 14:2435–2443

    Article  CAS  PubMed  Google Scholar 

  82. Zhou R, Ng A, Constine LS et al (2016) A comparative evaluation of normal tissue doses for patients receiving radiaiton therapy for Hodgkin’s lymphoma on the childhood Cancer survivor study and recent Children’s oncology group trials. Int J Radiat Oncol Biol Phys 95(2):707–711

    Article  PubMed  PubMed Central  Google Scholar 

  83. Arakelyan N, Jais J-P, Delwall V et al (2010) Reduced versus full doses of irradiation after 3 cycles of combined doxorubicin, bleomycin, vinblastine, and dacarbazine in early stage Hodgkin lymphomas. Cancer 116:4054–4062

    Article  PubMed  Google Scholar 

  84. Tseng YD, Cutter DJ, Plastaras JP et al (2017) Evidence-based review on the use of proton therapy in lymphoma from the particle therapy cooperative group (PTCOG) lymphoma subcommittee. Int J Radiat Oncol Biol Phys 99(4):825–842

    Article  PubMed  Google Scholar 

  85. Voong KR, McSpadden K, Pinnix CC et al (2014) Radiat Oncol 9(94):1–9

    Google Scholar 

  86. Milgrom SA, Chi PCM, Pinnix CC, et al. IJROBP 2017 99(2) S61

    Google Scholar 

  87. Filippi AR, Ragona R, Piva C et al (2015) Optimized volumetric arc therapy versus 3D-CRT for early stage mediastinal Hodgkin lymphoma without axillary involvement: a comparison of second cancers and heart disease risk. Int J Radiat Oncol Biol Phys 92(1):161–168

    Article  PubMed  Google Scholar 

  88. Levis M, De Luca V, Fiandra C et al (2018) Plan optimization for mediastinal radiotherapy: estimation of coronary arteries motion with ECG-gated cardiac imaging and creation of compensatory expansion margins. Radiother Oncol 127(3):481–486

    Article  PubMed  Google Scholar 

  89. Girinsky T, Pichenot C, Beaudre A et al (2006) Is intensity-modulated radiotherapy better than conventional radiation treatment and three-dimensional conformal radiotherapy for mediastinal masses in patients with Hodgkin’s disease, and is there a role for beam orientation optimization and dose constraints assigned to virtual volumes? Int J Radiat Oncol Biol Phys 64(1):218–226

    Article  PubMed  Google Scholar 

  90. Petersen PM, Azxnar MC, Berthelsen AK et al (2015) Acta Oncol 54(1):60–66

    Article  CAS  PubMed  Google Scholar 

  91. Charpentier AM, Conrad T, Sykes J et al (2014) Active breathing control for patients receiving mediastinal radiaiton therapy for lymphoma: impact on normal tissue dose. Pract Radiat Oncol 4(3):174–180

    Article  PubMed  Google Scholar 

  92. Hoppe BS, Mendenhall NP, Louis D et al (2017) Comparing breath hold and free breathing during intensity-modulated radiation therapy and proton therapy in patients with mediastinal Hodgkin lymphoma. Int J Part Ther 3(4):492–496

    Article  PubMed  PubMed Central  Google Scholar 

  93. Paumier A, Ghalibafian M, Gilmore J et al (2012) Dosimetric benefits of intensity-modulated radiotherapy combined with the deep-inspiration breath-hold technique in patients with mediastinal Hodgkin’s lymphoma. Int J Radiat Oncol Biol Phys 82(4):1522–1527

    Article  PubMed  Google Scholar 

  94. Dabaja BS, Hoppe BS, Plastaras JP et al (2018) Proton therapy for adults with mediastinal lymphomas: the international lymphoma radiation oncology group guidelines. Blood 132(16):1635–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hoppe BS, Hill-Kayser CE, Tseng YD et al (2017) Consolidative proton therapy after chemotherapy for patients with Hodgkin lymphoma. Ann Oncol 28(9):2179–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nanda R, Flampouri S, Mendenhall NP et al (2017) Pulmonary toxicity following proton therapy for thoracic lymphoma. Int J Radiat Oncol Biol Phys 99(2):494–497

    Article  PubMed  Google Scholar 

  97. Hoppe BS, Flampouri S, Su Z et al (2012) Effective dose reduction to cardiac structures using protons compared with 3DCRT and IMRT in mediastinal Hodgkin lymphoma. Int J Radiat Oncol Biol Phys 84(2):449–455

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Yahalom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yahalom, J., Hoppe, B.S., Yang, J.C., Hoppe, R.T. (2020). Principles of Radiation Therapy for Hodgkin Lymphoma. In: Engert, A., Younes, A. (eds) Hodgkin Lymphoma. Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-32482-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32482-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32481-0

  • Online ISBN: 978-3-030-32482-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics