Skip to main content

\(L^q\) Dimensions of Self-similar Measures and Applications: A Survey

  • Chapter
  • First Online:
New Trends in Applied Harmonic Analysis, Volume 2

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

We present a self-contained proof of a formula for the \(L^q\) dimensions of self-similar measures on the real line under exponential separation (up to the proof of an inverse theorem for the \(L^q\) norm of convolutions). This is a special case of a more general result of the author from Shmerkin (Ann Math, 2019), and one of the goals of this survey is to present the ideas in a simpler, but important, setting. We also review some applications of the main result to the study of Bernoulli convolutions and intersections of self-similar Cantor sets.

Partially supported by Projects CONICET-PIP 11220150100355 and PICT 2015-3675 (ANPCyT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Aistleitner, G. Larcher, M. Lewko, Additive energy and the Hausdorff dimension of the exceptional set in metric pair correlation problems. Israel J. Math. 222(1), 463–485 (2017). With an appendix by Jean Bourgain

    Article  MathSciNet  Google Scholar 

  2. S. Akiyama, D.-J. Feng, T. Kempton, T. Persson, On the Hausdorff dimension of Bernoulli convolutions. Int. Math. Res. Not. IMRN (2018). arXiv:1801.07118

  3. B. Bárány, M. Rams, K. Simon, On the dimension of triangular self-affine sets. Ergod. Theory Dyn. Syst. 39(7), 1751–1783 (2019)

    Article  MathSciNet  Google Scholar 

  4. B. Bárány, M. Rams, Dimension of slices of Sierpiński-like carpets. J. Fractal Geom. 1(3), 273–294 (2014)

    Article  MathSciNet  Google Scholar 

  5. E. Breuillard, P.P. Varjú, On the dimension of Bernoulli convolutions. Ann. Probab. 47(4), 2582–2617 (2016)

    Article  MathSciNet  Google Scholar 

  6. E. Breuillard, P.P. Varjú, Entropy of Bernoulli convolutions and uniform exponential growth for linear groups. J. Anal. Math. (2018). arXiv:1510.04043

  7. S. Dyatlov, J. Zahl, Spectral gaps, additive energy, and a fractal uncertainty principle. Geom. Funct. Anal. 26(4), 1011–1094 (2016)

    Article  MathSciNet  Google Scholar 

  8. P. Erdős, On a family of symmetric Bernoulli convolutions. Am. J. Math. 61, 974–976 (1939)

    Article  MathSciNet  Google Scholar 

  9. P. Erdős, On the smoothness properties of a family of Bernoulli convolutions. Am. J. Math. 62, 180–186 (1940)

    Article  MathSciNet  Google Scholar 

  10. J.M. Fraser, T. Jordan, The Assouad dimension of self-affine carpets with no grid structure. Proc. Am. Math. Soc. 145(11), 4905–4918 (2017)

    Article  MathSciNet  Google Scholar 

  11. A.M. Garsia, Arithmetic properties of Bernoulli convolutions. Trans. Am. Math. Soc. 102, 409–432 (1962)

    Article  MathSciNet  Google Scholar 

  12. M. Hochman, On self-similar sets with overlaps and inverse theorems for entropy. Ann. of Math. 180(2), 773–822 (2014)

    Article  MathSciNet  Google Scholar 

  13. M. Hochman, On self-similar sets with overlaps and inverse theorems for entropy in \(\mathbb{R}^d\). Mem. Am. Math. Soc. (2017)

    Google Scholar 

  14. K.-S. Lau, S.-M. Ngai, Multifractal measures and a weak separation condition. Adv. Math. 141(1), 45–96 (1999)

    Article  MathSciNet  Google Scholar 

  15. Y. Peres, B. Solomyak, Existence of \(L^q\) dimensions and entropy dimension for self-conformal measures. Indiana Univ. Math. J. 49(4), 1603–1621 (2000)

    Article  MathSciNet  Google Scholar 

  16. Y. Peres, B. Solomyak, Problems on self-similar sets and self-affine sets: an update, in Fractal Geometry and Stochastics, II (Greifswald/Koserow, 1998). Progress in Probability, vol. 46 (Birkhäuser, Basel, 2000), pp. 95–106

    Chapter  Google Scholar 

  17. E. Rossi, P. Shmerkin, On measures that improve \({L}^q\) dimension under convolution. Rev. Mat. Iberoam (2018). arXiv:1812.05660

  18. P. Shmerkin, On the exceptional set for absolute continuity of Bernoulli convolutions. Geom. Funct. Anal. 24(3), 946–958 (2014)

    Article  MathSciNet  Google Scholar 

  19. P. Shmerkin, On Furstenberg’s intersection conjecture, self-similar measures, and the \(L^q\) norms of convolutions. Ann. Math. 2(2), 319–391 (2019)

    Google Scholar 

  20. P. Shmerkin, B. Solomyak, Absolute continuity of self-similar measures, their projections and convolutions. Trans. Am. Math. Soc. 368(7), 5125–5151 (2016)

    Article  MathSciNet  Google Scholar 

  21. B. Solomyak, On the random series \(\sum \pm \lambda ^n\) (an Erdös problem). Ann. of Math. (2) 142(3), 611–625 (1995)

    Google Scholar 

  22. P.P. Varjú, Absolute continuity of Bernoulli convolutions for algebraic parameters. J. Am. Math. Soc. 32(2), 351–397 (2018)

    Article  MathSciNet  Google Scholar 

  23. P.P. Varjú, On the dimension of Bernoulli convolutions for all transcendental parameters. Ann. Math. (2) 189(3), 1001–1011 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Shmerkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shmerkin, P. (2019). \(L^q\) Dimensions of Self-similar Measures and Applications: A Survey. In: Aldroubi, A., Cabrelli, C., Jaffard, S., Molter, U. (eds) New Trends in Applied Harmonic Analysis, Volume 2. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-32353-0_9

Download citation

Publish with us

Policies and ethics