Skip to main content

Obesity

  • Chapter
  • First Online:
Male Infertility

Abstract

The prevalence of obesity has increased at soaring rates in the last 35 years with greater than a third of the US population being afflicted with the condition. Concurrent reduction in male fecundity in terms of declining semen quality is another major global concern. A growing body of research has indicated the potential role of obesity in the deterioration of male fertility. Obesity may act through alteration in the hypothalamic–pituitary–gonadal axis and its cross talks with other hormones, thus impairing the intricate orchestration of prime endocrine regulators of male reproduction. Its deleterious impact upon semen parameters may also be attributed to adipose tissue-derived factors, certain physical factors such as elevated scrotal temperature due to excessive adipose tissue accumulation, sleep apnea, and other associated disorders. Obesity may also modulate the genetic and epigenetic constitution of spermatozoa, thereby directly disrupting sperm morphology and functions. It is suggested that male obesity has a deleterious impact on the outcomes of assisted reproductive techniques (ARTs) in relevance to pregnancy rates, live births, and overall health of the offspring. This chapter discusses the overall mechanism to provide better understanding of the association of obesity with male infertility. It also puts forth the management and treatment strategies for obesity-induced male infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huxley RR, et al. Risk of all-cause mortality and vascular events in women versus men with type 1 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2015;3(3):198–206.

    Article  PubMed  Google Scholar 

  2. Sengupta P, et al. Decline in sperm count in European men during the past 50 years. Hum Exp Toxicol. 2018;37(3):247–55.

    Article  CAS  PubMed  Google Scholar 

  3. Sengupta P, Dutta S, Krajewska-Kulak E. The disappearing sperms: analysis of reports published between 1980 and 2015. Am J Mens Health. 2017;11(4):1279–304.

    Article  PubMed  Google Scholar 

  4. Sengupta P, et al. Evidence for decreasing sperm count in African population from 1965 to 2015. Afr Health Sci. 2017;17(2):418–27.

    Article  PubMed  PubMed Central  Google Scholar 

  5. de Kretser DM. Male infertility. Lancet. 1997;349(9054):787–90.

    Article  PubMed  Google Scholar 

  6. Kushwaha B, Gupta G. Sexually transmitted infections and male infertility: old enigma, new insights. In: Male infertility: understanding, causes and treatment. Singapore: Springer; 2017. p. 183–212.

    Chapter  Google Scholar 

  7. Collins GG, Rossi BV. The impact of lifestyle modifications, diet, and vitamin supplementation on natural fertility. Fertil Res Pract. 2015;1(1):11.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Henkel R, Samanta L, Agarwal A. Oxidants, antioxidants, and impact of the oxidative status in male reproduction. London: Academic Press; 2018.

    Google Scholar 

  9. WHO. Obesity and overweight. 2018 (cited 14 Dec 2018).

    Google Scholar 

  10. Alberti K, et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation. 2009;120(16):1640–5.

    Article  CAS  PubMed  Google Scholar 

  11. Leisegang K. Malnutrition & obesity. In: Samanta L, Henkel R, Agarwal A, editors. Oxidants, antioxidants, and impact of the oxidative status in male reproduction. London: Academic Press; 2018.

    Google Scholar 

  12. Fernández-Sánchez A, et al. Inflammation, oxidative stress, and obesity. Int J Mol Sci. 2011;12(5):3117–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Du Plessis SS, et al. The effect of obesity on sperm disorders and male infertility. Nat Rev Urol. 2010;7(3):153.

    Article  PubMed  Google Scholar 

  14. Sermondade N, et al. BMI in relation to sperm count: an updated systematic review and collaborative meta-analysis. Hum Reprod Update. 2012;19(3):221–31.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bieniek JM, et al. Influence of increasing body mass index on semen and reproductive hormonal parameters in a multi-institutional cohort of subfertile men. Fertil Steril. 2016;106(5):1070–5.

    Article  CAS  PubMed  Google Scholar 

  16. Sallmén M, et al. Reduced fertility among overweight and obese men. Epidemiology. 2006;17:520–3.

    Article  PubMed  Google Scholar 

  17. Agarwal A, Cho C-L, Esteves SC. Should we evaluate and treat sperm DNA fragmentation? Curr Opin Obstet Gynecol. 2016;28(3):164–71.

    Article  PubMed  Google Scholar 

  18. Cabler S, et al. Obesity: modern man’s fertility nemesis. Asian J Androl. 2010;12(4):480.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sharma R, et al. A meta-analysis to evaluate the effects of body mass index on reproductive hormones in men. Fertil Steril. 2017;108(3):e215.

    Article  Google Scholar 

  20. Leisegang K, Bouic PJ, Henkel RR. Metabolic syndrome is associated with increased seminal inflammatory cytokines and reproductive dysfunction in a case controlled male cohort. Am J Reprod Immunol. 2016;76(2):155–63.

    Article  CAS  PubMed  Google Scholar 

  21. Bakos HW, et al. Paternal body mass index is associated with decreased blastocyst development and reduced live birth rates following assisted reproductive technology. Fertil Steril. 2011;95(5):1700–4.

    Article  PubMed  Google Scholar 

  22. Palmer NO, et al. Impact of obesity on male fertility, sperm function and molecular composition. Spermatogenesis. 2012;2(4):253–63.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Traish AM, et al. The dark side of testosterone deficiency: I. metabolic syndrome and erectile dysfunction. J Androl. 2009;30(1):10–22.

    Article  CAS  PubMed  Google Scholar 

  24. Aguilar M, et al. Prevalence of the metabolic syndrome in the United States, 2003–2012. JAMA. 2015;313(19):1973–4.

    Article  CAS  PubMed  Google Scholar 

  25. Kahn BE, Brannigan RE. Obesity and male infertility. Curr Opin Urol. 2017;27(5):441–5.

    Article  PubMed  Google Scholar 

  26. Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract. 2014;2014:1.

    Google Scholar 

  27. Blache D, Zhang S, Martin G. Fertility in male sheep: modulators of the acute effects of nutrition on the reproductive axis of male sheep. Reproduction (Cambridge, England) Supplement. 2003;61:387–402.

    CAS  Google Scholar 

  28. Schneider JE. Energy balance and reproduction. Physiol Behav. 2004;81(2):289–317.

    Article  CAS  PubMed  Google Scholar 

  29. Hammoud AO, et al. Obesity and male reproductive potential. J Androl. 2006;27(5):619–26.

    Article  PubMed  Google Scholar 

  30. Chavarro JE, et al. Body mass index in relation to semen quality, sperm DNA integrity, and serum reproductive hormone levels among men attending an infertility clinic. Fertil Steril. 2010;93(7):2222–31.

    Article  CAS  PubMed  Google Scholar 

  31. Jensen TK, et al. Body mass index in relation to semen quality and reproductive hormones among 1,558 Danish men. Fertil Steril. 2004;82(4):863–70.

    Article  CAS  PubMed  Google Scholar 

  32. Macdonald A, Stewart A, Farquhar C. Body mass index in relation to semen quality and reproductive hormones in New Zealand men: a cross-sectional study in fertility clinics. Hum Reprod. 2013;28(12):3178–87.

    Article  CAS  PubMed  Google Scholar 

  33. Davidson LM, et al. Deleterious effects of obesity upon the hormonal and molecular mechanisms controlling spermatogenesis and male fertility. Hum Fertil. 2015;18(3):184–93.

    Article  CAS  Google Scholar 

  34. Carlsen E, et al. Evidence for decreasing quality of semen during past 50 years. BMJ. 1992;305(6854):609–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Skakkebaek NE, et al. Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol Rev. 2015;96(1):55–97.

    Article  CAS  PubMed Central  Google Scholar 

  36. Sermondade N, et al. Body mass index is not associated with sperm–zona pellucida binding ability in subfertile males. Asian J Androl. 2013;15(5):626.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Håkonsen LB, et al. Does weight loss improve semen quality and reproductive hormones? Results from a cohort of severely obese men. Reprod Health. 2011;8(1):24.

    Article  PubMed  PubMed Central  Google Scholar 

  38. De Rooij D, Van Alphen M, Van de Kant H. Duration of the cycle of the seminiferous epithelium and its stages in the rhesus monkey (Macaca mulatta). Biol Reprod. 1986;35(3):587–91.

    Article  PubMed  Google Scholar 

  39. Hikim AS, Swerdloff RS. Hormonal and genetic control of germ cell apoptosis in the testis. Rev Reprod. 1999;4(1):38–47.

    Article  CAS  Google Scholar 

  40. Rodriguez I, et al. An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J. 1997;16(9):2262–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Garolla A, et al. Seminal and molecular evidence that sauna exposure affects human spermatogenesis. Hum Reprod. 2013;28(4):877–85.

    Article  CAS  PubMed  Google Scholar 

  42. Jia Y-F, et al. Obesity impairs male fertility through long-term effects on spermatogenesis. BMC Urol. 2018;18(1):42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xin W, et al. Involvement of endoplasmic reticulum stress-associated apoptosis in a heart failure model induced by chronic myocardial ischemia. Int J Mol Med. 2011;27(4):503–9.

    CAS  PubMed  Google Scholar 

  44. Li C, et al. Endoplasmic reticulum stress promotes the apoptosis of testicular germ cells in hyperlipidemic rats. Zhonghua Nan Ke Xue/Natl J Androl. 2015;21(5):402–7.

    CAS  Google Scholar 

  45. Hammiche F, et al. Sperm quality decline among men below 60 years of age undergoing IVF or ICSI treatment. J Androl. 2011;32(1):70–6.

    Article  CAS  PubMed  Google Scholar 

  46. Kort HI, et al. Impact of body mass index values on sperm quantity and quality. J Androl. 2006;27(3):450–2.

    Article  PubMed  Google Scholar 

  47. Tunc O, Bakos H, Tremellen K. Impact of body mass index on seminal oxidative stress. Andrologia. 2011;43(2):121–8.

    Article  CAS  PubMed  Google Scholar 

  48. Sermondade N, et al. Obesity and increased risk for oligozoospermia and azoospermia. Arch Intern Med. 2012;172(5):440–2.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Benchaib M, et al. Sperm deoxyribonucleic acid fragmentation as a prognostic indicator of assisted reproductive technology outcome. Fertil Steril. 2007;87(1):93–100.

    Article  CAS  PubMed  Google Scholar 

  50. Selvam MKP, Agarwal A. A systematic review on sperm DNA fragmentation in male factor infertility: laboratory assessment. Arab J Urol. 2018;16(1):65–76.

    Article  Google Scholar 

  51. Mahfouz R, et al. Semen characteristics and sperm DNA fragmentation in infertile men with low and high levels of seminal reactive oxygen species. Fertil Steril. 2010;94(6):2141–6.

    Article  CAS  PubMed  Google Scholar 

  52. Agarwal A, et al. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl Androl Urol. 2016;5(6):935.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jarow J, Sigman M, Kolettis P. The optimal evaluation of the infertile male: best practice statement reviewed and validity confirmed 2011. American Urological Association. 2011.

    Google Scholar 

  54. Rybar R, et al. Male obesity and age in relationship to semen parameters and sperm chromatin integrity. Andrologia. 2011;43(4):286–91.

    Article  CAS  PubMed  Google Scholar 

  55. Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93(4):1027–36.

    Article  CAS  PubMed  Google Scholar 

  56. Fariello RM, et al. Association between obesity and alteration of sperm DNA integrity and mitochondrial activity. BJU Int. 2012;110(6):863–7.

    Article  CAS  PubMed  Google Scholar 

  57. La Vignera S, et al. Negative effect of increased body weight on sperm conventional and nonconventional flow cytometric sperm parameters. J Androl. 2012;33(1):53–8.

    Article  CAS  PubMed  Google Scholar 

  58. Dupont C, et al. Obesity leads to higher risk of sperm DNA damage in infertile patients. Asian J Androl. 2013;15(5):622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tsai EC, et al. Association of bioavailable, free, and total testosterone with insulin resistance: influence of sex hormone-binding globulin and body fat. Diabetes Care. 2004;27(4):861–8.

    Article  CAS  PubMed  Google Scholar 

  60. Katib A. Mechanisms linking obesity to male infertility. Cent Eur J Urol. 2015;68(1):79.

    CAS  Google Scholar 

  61. Schulster M, Bernie AM, Ramasamy R. The role of estradiol in male reproductive function. Asian J Androl. 2016;18(3):435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chimento A, et al. Role of estrogen receptors and G protein-coupled estrogen receptor in regulation of hypothalamus–pituitary–testis axis and spermatogenesis. Front Endocrinol. 2014;5:1.

    Google Scholar 

  63. Salazar M, et al. The impact of obesity on fertility. J Reprod Med Gynecol Obstet. 2018;3:009.

    Google Scholar 

  64. Bessesen D, Hill J, Wyatt H. Hormones and obesity. J Clin Endocrinol Metabol. 2004;89(4):E2.

    Article  Google Scholar 

  65. Álvarez-Castro P, Pena L, Cordido F. Ghrelin in obesity, physiological and pharmacological considerations. Mini Rev Med Chem. 2013;13(4):541–52.

    Article  PubMed  Google Scholar 

  66. Ahima RS. Revisiting leptin’s role in obesity and weight loss. J Clin Invest. 2008;118(7):2380.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Perez-Leighton C, et al. Role of orexin receptors in obesity: from cellular to behavioral evidence. Int J Obes. 2013;37(2):167–74.

    Article  CAS  Google Scholar 

  68. Kawano J, Arora R. The role of adiponectin in obesity, diabetes, and cardiovascular disease. J Cardiometab Syndr. 2009;4(1):44–9.

    Article  PubMed  Google Scholar 

  69. Ren A-J, et al. Obestatin, obesity and diabetes. Peptides. 2009;30(2):439–44.

    Article  CAS  PubMed  Google Scholar 

  70. Bouloumie A, et al. Leptin induces oxidative stress in human endothelial cells. FASEB J. 1999;13(10):1231–8.

    Article  CAS  PubMed  Google Scholar 

  71. Yamagishi SI, et al. Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase a. J Biol Chem. 2001;276(27):25096–100.

    Article  CAS  PubMed  Google Scholar 

  72. Mounzih K, Lu R, Chehab FF. Leptin treatment rescues the sterility of genetically obese Ob/Ob males. Endocrinology. 1997;138(3):1190–3.

    Article  CAS  PubMed  Google Scholar 

  73. Bhat GK, et al. Influence of a leptin deficiency on testicular morphology, germ cell apoptosis, and expression levels of apoptosis-related genes in the mouse. J Androl. 2006;27(2):302–10.

    Article  CAS  PubMed  Google Scholar 

  74. Ramos CF, Zamoner A. Thyroid hormone and leptin in the testis. Front Endocrinol. 2014;5:198.

    Article  Google Scholar 

  75. Wauters M, Considine RV, Van Gaal LF. Human leptin: from an adipocyte hormone to an endocrine mediator. Eur J Endocrinol. 2000;143(3):293–311.

    Article  CAS  PubMed  Google Scholar 

  76. Page ST, et al. Testosterone administration suppresses adiponectin levels in men. J Androl. 2005;26(1):85–92.

    CAS  PubMed  Google Scholar 

  77. Yuan F, et al. Adiponectin inhibits the generation of reactive oxygen species induced by high glucose and promotes endothelial NO synthase formation in human mesangial cells. Mol Med Rep. 2012;6(2):449–53.

    Article  CAS  PubMed  Google Scholar 

  78. Wolfe A, Hussain MA. The emerging role(s) for kisspeptin in metabolism in mammals. Front Endocrinol. 2018;9:184.

    Article  Google Scholar 

  79. Clarke H, Dhillo WS, Jayasena CN. Comprehensive review on kisspeptin and its role in reproductive disorders. Endocrinol Metab. 2015;30(2):124–41.

    Article  CAS  Google Scholar 

  80. Zheng D, et al. Orexin A-mediated stimulation of 3β-HSD expression and testosterone production through MAPK signaling pathways in primary rat Leydig cells. J Endocrinol Investig. 2014;37(3):285–92.

    Article  CAS  Google Scholar 

  81. Duffy CM, Nixon JP, Butterick TA. Orexin a attenuates palmitic acid-induced hypothalamic cell death. Mol Cell Neurosci. 2016;75:93–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc. 2001;60(3):329–39.

    Article  CAS  PubMed  Google Scholar 

  83. Flehmig G, et al. Identification of adipokine clusters related to parameters of fat mass, insulin sensitivity and inflammation. PLoS One. 2014;9(6):e99785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dandona P, Dhindsa S. Update: hypogonadotropic hypogonadism in type 2 diabetes and obesity. J Clin Endocrinol Metabol. 2011;96(9):2643–51.

    Article  CAS  Google Scholar 

  85. Ishikawa T, et al. Ghrelin expression in human testis and serum testosterone level. J Androl. 2007;28(2):320–4.

    Article  CAS  PubMed  Google Scholar 

  86. Wang L, et al. Role of ghrelin on testosterone secretion and the mRNA expression of androgen receptors in adult rat testis. Syst Biol Reprod Med. 2011;57(3):119–23.

    Article  CAS  PubMed  Google Scholar 

  87. Greenman Y, et al. Testosterone is a strong correlate of ghrelin levels in men and postmenopausal women. Neuroendocrinology. 2009;89(1):79–85.

    Article  CAS  PubMed  Google Scholar 

  88. Suzuki H, Matsuzaki J, Hibi T. Ghrelin and oxidative stress in gastrointestinal tract. J Clin Biochem Nutr. 2010;48(2):122–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kasturi SS, Tannir J, Brannigan RE. The metabolic syndrome and male infertility. J Androl. 2008;29(3):251–9.

    Article  CAS  PubMed  Google Scholar 

  90. Esteves SC. Management of infertile men with nonobstructive azoospermia due to spermatogenic failure. In: Male infertility: New York, USA: Springer; 2017. p. 107–34.

    Google Scholar 

  91. Arsov T, et al. Fat aussie – a new Alstrom syndrome mouse showing a critical role for ALMS1 in obesity, diabetes, and spermatogenesis. Mol Endocrinol. 2006;20(7):1610–22.

    Article  CAS  PubMed  Google Scholar 

  92. Hammoud A, et al. An aromatase polymorphism modulates the relationship between weight and estradiol levels in obese men. Fertil Steril. 2010;94(5):1734–8.

    Article  CAS  PubMed  Google Scholar 

  93. Xu X, et al. The effect of aromatase on the reproductive function of obese males. Horm Metab Res. 2017;49(08):572–9.

    Article  CAS  PubMed  Google Scholar 

  94. Ng S-F, et al. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature. 2010;467(7318):963.

    Article  CAS  PubMed  Google Scholar 

  95. Ng S-F, et al. Paternal high-fat diet consumption induces common changes in the transcriptomes of retroperitoneal adipose and pancreatic islet tissues in female rat offspring. FASEB J. 2014;28(4):1830–41.

    Article  CAS  PubMed  Google Scholar 

  96. Fullston T, et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 2013;27(10):4226–43.

    Article  CAS  PubMed  Google Scholar 

  97. Palmer NO, et al. SIRT6 in mouse spermatogenesis is modulated by diet-induced obesity. Reprod Fertil Dev. 2011;23(7):929–39.

    Article  CAS  PubMed  Google Scholar 

  98. Consales C, et al. Indices of methylation in sperm DNA from fertile men differ between distinct geographical regions. Hum Reprod. 2014;29(9):2065–72.

    Article  CAS  PubMed  Google Scholar 

  99. Soubry A, et al. Obesity-related DNA methylation at imprinted genes in human sperm: results from the TIEGER study. Clin Epigenetics. 2016;8(1):51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Donkin I, et al. Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans. Cell Metab. 2016;23(2):369–78.

    Article  CAS  PubMed  Google Scholar 

  101. Miska EA, Ferguson-Smith AC. Transgenerational inheritance: models and mechanisms of non–DNA sequence–based inheritance. Science. 2016;354(6308):59–63.

    Article  CAS  PubMed  Google Scholar 

  102. Soubry A. Epigenetic inheritance and evolution: a paternal perspective on dietary influences. Prog Biophys Mol Biol. 2015;118(1–2):79–85.

    Article  CAS  PubMed  Google Scholar 

  103. Manikkam M, et al. Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures. PLoS One. 2012;7(2):e31901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Soubry A, et al. Paternal obesity is associated with IGF2 hypomethylation in newborns: results from a Newborn epigenetics study (NEST) cohort. BMC Med. 2013;11(1):29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Durairajanayagam D, Agarwal A, Ong C. Causes, effects and molecular mechanisms of testicular heat stress. Reprod Biomed Online. 2015;30(1):14–27.

    Article  CAS  PubMed  Google Scholar 

  106. Sarwer DB, et al. Obesity and sexual functioning. Curr Obes Rep. 2018;7(4):301–7.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Sharma R, et al. Lifestyle factors and reproductive health: taking control of your fertility. Reprod Biol Endocrinol. 2013;11(1):66.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Seftel A. Male hypogonadism. Part II: etiology, pathophysiology, and diagnosis. Int J Impot Res. 2006;18(3):223.

    Article  CAS  PubMed  Google Scholar 

  109. Yu Q, et al. Nitric oxide synthase in male urological and andrologic functions. In: Nitric oxide synthase-simple enzyme-complex roles; 2017. InTech.

    Google Scholar 

  110. Shamloul R, Ghanem H. Erectile dysfunction. Lancet. 2013;381(9861):153–65.

    Article  CAS  PubMed  Google Scholar 

  111. Hammoud AO, et al. Impact of male obesity on infertility: a critical review of the current literature. Fertil Steril. 2008;90(4):897–904.

    Article  PubMed  Google Scholar 

  112. Agarwal A, et al. Proteomics, oxidative stress and male infertility. Reprod Biomed Online. 2014;29(1):32–58.

    Article  CAS  PubMed  Google Scholar 

  113. Agarwal A, et al. Effect of oxidative stress on male reproduction. World J Men’s Health. 2014;32(1):1–17.

    Article  Google Scholar 

  114. Fang X, et al. Metformin improves epididymal sperm quality and antioxidant function of the testis in diet-induced obesity rats. Zhonghua Nan Ke Xue/Natl J Androl. 2012;18(2):146–9.

    CAS  Google Scholar 

  115. Durairajanayagam D. Lifestyle causes of male infertility. Arab J Urol. 2018;16(1):10–20.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Luboshitzky R, et al. Disruption of the nocturnal testosterone rhythm by sleep fragmentation in normal men. J Clin Endocrinol Metabol. 2001;86(3):1134–9.

    Article  CAS  Google Scholar 

  117. Keltz J, et al. Overweight men: clinical pregnancy after ART is decreased in IVF but not in ICSI cycles. J Assist Reprod Genet. 2010;27(9–10):539–44.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Colaci DS, et al. Men’s body mass index in relation to embryo quality and clinical outcomes in couples undergoing in vitro fertilization. Fertil Steril. 2012;98(5):1193–9.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Umul M, et al. Effect of increasing paternal body mass index on pregnancy and live birth rates in couples undergoing intracytoplasmic sperm injection. Andrologia. 2015;47(3):360–4.

    Article  CAS  PubMed  Google Scholar 

  120. Schliep KC, et al. Effect of male and female body mass index on pregnancy and live birth success after in vitro fertilization. Fertil Steril. 2015;103(2):388–95.

    Article  PubMed  Google Scholar 

  121. Petersen GL, et al. The influence of female and male body mass index on live births after assisted reproductive technology treatment: a nationwide register-based cohort study. Fertil Steril. 2013;99(6):1654–62.

    Article  PubMed  Google Scholar 

  122. Linabery AM, et al. Stronger influence of maternal than paternal obesity on infant and early childhood body mass index: the Fels Longitudinal Study. Pediatr Obes. 2013;8(3):159–69.

    Article  CAS  PubMed  Google Scholar 

  123. Sharman MJ, Volek JS. Weight loss leads to reductions in inflammatory biomarkers after a very-low-carbohydrate diet and a low-fat diet in overweight men. Clin Sci. 2004;107(4):365–9.

    Article  CAS  Google Scholar 

  124. Hayden RP, Flannigan R, Schlegel PN. The role of lifestyle in male infertility: diet, physical activity, and body habitus. Curr Urol Rep. 2018;19(7):56.

    Article  PubMed  Google Scholar 

  125. Yanovski SZ, Yanovski JA. Long-term drug treatment for obesity: a systematic and clinical review. JAMA. 2014;311(1):74–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Roth MY, Amory JK, Page ST. Treatment of male infertility secondary to morbid obesity. Nat Rev Endocrinol. 2008;4(7):415.

    Article  Google Scholar 

  127. Zumoff B, Miller LK, Strain GW. Reversal of the hypogonadotropic hypogonadism of obese men by administration of the aromatase inhibitor testolactone. Metabolism. 2003;52(9):1126–8.

    Article  CAS  PubMed  Google Scholar 

  128. Stokes VJ, Anderson RA, George JT. How does obesity affect fertility in men–and what are the treatment options? Clin Endocrinol. 2015;82(5):633–8.

    Article  Google Scholar 

  129. Tadros NN, Sabanegh ES. Empiric medical therapy with hormonal agents for idiopathic male infertility. Indian J Urol. 2017;33(3):194.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Hofny ER, et al. Semen parameters and hormonal profile in obese fertile and infertile males. Fertil Steril. 2010;94(2):581–4.

    Article  CAS  PubMed  Google Scholar 

  131. Quennell JH, et al. Leptin indirectly regulates gonadotropin-releasing hormone neuronal function. Endocrinology. 2009;150(6):2805–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mushtaq R, et al. Effect of male body mass index on assisted reproduction treatment outcome: an updated systematic review and meta-analysis. Reprod Biomed Online. 2018;36(4):459–71.

    Article  PubMed  Google Scholar 

  133. Abiad F, et al. Management of weight loss in obesity-associated male infertility: a spotlight on bariatric surgery. Hum Fertil. 2017;20(4):227–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agarwal, A., Dutta, S. (2020). Obesity. In: Parekattil, S., Esteves, S., Agarwal, A. (eds) Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-32300-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32300-4_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32299-1

  • Online ISBN: 978-3-030-32300-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics