Skip to main content

VoteNet: A Deep Learning Label Fusion Method for Multi-atlas Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11766))

Abstract

Deep learning (DL) approaches are state-of-the-art for many medical image segmentation tasks. They offer a number of advantages: they can be trained for specific tasks, computations are fast at test time, and segmentation quality is typically high. In contrast, previously popular multi-atlas segmentation (MAS) methods are relatively slow (as they rely on costly registrations) and even though sophisticated label fusion strategies have been proposed, DL approaches generally outperform MAS. In this work, we propose a DL-based label fusion strategy (VoteNet) which locally selects a set of reliable atlases whose labels are then fused via plurality voting. Experiments on 3D brain MRI data show that by selecting a good initial atlas set MAS with VoteNet significantly outperforms a number of other label fusion strategies as well as a direct DL segmentation approach. We also provide an experimental analysis of the upper performance bound achievable by our method. While unlikely achievable in practice, this bound suggests room for further performance improvements. Lastly, to address the runtime disadvantage of standard MAS, all our results make use of a fast DL registration approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    LPBA40 contains 40 3D brain MRIs with 56 manually segmented structures. Preprocessing includes affine registration to the MNI152 atlas and histogram equalization.

  2. 2.

    MABMIS uses Diffeomorphic Demons for registration and hence results are not directly comparable to ours; we use Quicksilver for all other label fusion methods.

References

  1. Artaechevarria, X., Muñoz-Barrutia, A., Ortiz-de Solórzano, C.: Efficient classifier generation and weighted voting for atlas-based segmentation: two small steps faster and closer to the combination oracle. In: SPIE, vol. 6914 (2008)

    Google Scholar 

  2. Bai, W., et al.: A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images. TMI 32(7), 1302–1315 (2013)

    Google Scholar 

  3. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B (Methodol.) 57(1), 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  5. Hansen, L., Salamon, P.: Neural network ensembles. PAMI 10, 993 (1990)

    Article  Google Scholar 

  6. Heckemann, R.A., Hajnal, J.V., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33(1), 115–126 (2006)

    Article  Google Scholar 

  7. Iglesias, J.E., Sabuncu, M.R.: Multi-atlas segmentation of biomedical images: a survey. MEDIA 24(1), 205–219 (2015)

    Google Scholar 

  8. Jia, H., Yap, P.T., Shen, D.: Iterative multi-atlas-based multi-image segmentation with tree-based registration. NeuroImage 59(1), 422–430 (2012)

    Article  Google Scholar 

  9. Konukoglu, E., Glocker, B., Zikic, D., Criminisi, A.: Neighbourhood approximation using randomized forests. MEDIA 17(7), 790–804 (2013)

    Google Scholar 

  10. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  11. Sanroma, G., Wu, G., Gao, Y., Shen, D.: Learning to rank atlases for multiple-atlas segmentation. TMI 33(10), 1939–1953 (2014)

    Google Scholar 

  12. Wang, H., Cao, Y., Syeda-Mahmood, T.: Multi-atlas segmentation with learning-based label fusion. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI 2014. LNCS, vol. 8679, pp. 256–263. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10581-9_32

    Chapter  Google Scholar 

  13. Wang, H., Suh, J.W., Das, S.R., Pluta, J.B., Craige, C., Yushkevich, P.A.: Multi-atlas segmentation with joint label fusion. PAMI 35(3), 611–623 (2013)

    Article  Google Scholar 

  14. Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. TMI 23(7), 903 (2004)

    Google Scholar 

  15. Yang, H., Sun, J., Li, H., Wang, L., Xu, Z.: Neural multi-atlas label fusion: application to cardiac MR images. MEDIA 49, 60–75 (2018)

    Google Scholar 

  16. Yang, X., Kwitt, R., Niethammer, M.: Quicksilver: fast predictive image registration-a deep learning approach. NeuroImage 158, 378–396 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Research reported in this work was supported by the National Institutes of Health (NIH) and the National Science Foundation (NSF) under award numbers NSF EECS-1711776 and NIH 1R01AR072013. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhipeng Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, Z., Han, X., Niethammer, M. (2019). VoteNet: A Deep Learning Label Fusion Method for Multi-atlas Segmentation. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11766. Springer, Cham. https://doi.org/10.1007/978-3-030-32248-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32248-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32247-2

  • Online ISBN: 978-3-030-32248-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics