Skip to main content

Disease-Image Specific Generative Adversarial Network for Brain Disease Diagnosis with Incomplete Multi-modal Neuroimages

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11766))

Abstract

Incomplete data problem is unavoidable in automated brain disease diagnosis using multi-modal neuroimages (e.g., MRI and PET). To utilize all available subjects to train diagnostic models, deep networks have been proposed to directly impute missing neuroimages by treating all voxels in a 3D volume equally. These methods are not diagnosis-oriented, as they ignore the disease-image specific information conveyed in multi-modal neuroimages, i.e., (1) disease may cause abnormalities only at local brain regions, and (2) different modalities may highlight different disease-associated regions. In this paper, we propose a unified disease-image specific deep learning framework for joint image synthesis and disease diagnosis using incomplete multi-modal neuroimaging data. Specifically, by using the whole-brain images as input, we design a disease-image specific neural network (DSNN) to implicitly model disease-image specificity in MRI/PET scans using the spatial cosine kernel. Moreover, we develop a feature-consistent generative adversarial network (FGAN) to synthesize missing images, encouraging DSNN feature maps of synthetic images and their respective real images to be consistent. Our DSNN and FGAN can be jointly trained, by which missing images are imputed in a task-oriented manner for brain disease diagnosis. Experimental results on 1, 466 subjects suggest that our method not only generates reasonable neuroimages, but also achieves the state-of-the-art performance in both tasks of Alzheimer’s disease (AD) identification and mild cognitive impairment (MCI) conversion prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou, J., Yuan, L., Liu, J., Ye, J.: A multi-task learning formulation for predicting disease progression. In: ACM SIGKDD, pp. 814–822. ACM (2011)

    Google Scholar 

  2. Pan, Y., Liu, M., Lian, C., Zhou, T., Xia, Y., Shen, D.: Synthesizing missing PET from MRI with cycle-consistent generative adversarial networks for Alzheimer’s disease diagnosis. MICCA I, 455–463 (2018)

    Google Scholar 

  3. Qiao, T., Zhang, J., Xu, D., Tao, D.: MirrorGAN: learning text-to-image generation by redescription. arXiv preprint arXiv:1903.05854 (2019)

  4. Wachinger, C., Salat, D.H., Weiner, M., Reuter, M.: Whole-brain analysis reveals increased neuroanatomical asymmetries in dementia for hippocampus and amygdala. Brain 139(12), 3253–3266 (2016)

    Article  Google Scholar 

  5. Liu, M., Zhang, J., Adeli, E., Shen, D.: Landmark-based deep multi-instance learning for brain disease diagnosis. Med. Image Anal. 43, 157–168 (2018)

    Article  Google Scholar 

  6. Pan, Y., Xia, Y., Shen, D.: Foreground fisher vector: encoding class-relevant foreground to improve image classification. IEEE Trans. Image Process. (2019)

    Google Scholar 

  7. Sánchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: theory and practice. Int. J. Comput. Vis. 105(3), 222–245 (2013)

    Article  MathSciNet  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Jack, C., Bernstein, M., Fox, N., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imag. 27(4), 685–691 (2008)

    Article  Google Scholar 

  11. Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: ICPR, pp. 2366–2369 (2010)

    Google Scholar 

  12. Rusinek, H., et al.: Alzheimer disease: measuring loss of cerebral gray matter with MR imaging. Radiology 178(1), 109–114 (1991)

    Article  Google Scholar 

  13. Coupé, P., Eskildsen, S.F., Manjón, J.V., Fonov, V.S., Collins, D.L.: Simultaneous segmentation and grading of anatomical structures for patient’s classification: application to Alzheimer’s disease. NeuroImage 59(4), 3736–3747 (2012)

    Article  Google Scholar 

  14. Koyejo, O.O., Natarajan, N., Ravikumar, P.K., Dhillon, I.S.: Consistent binary classification with generalized performance metrics. In: NIPS, pp. 2744–2752 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingxia Liu , Yong Xia or Dinggang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, Y., Liu, M., Lian, C., Xia, Y., Shen, D. (2019). Disease-Image Specific Generative Adversarial Network for Brain Disease Diagnosis with Incomplete Multi-modal Neuroimages. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11766. Springer, Cham. https://doi.org/10.1007/978-3-030-32248-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32248-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32247-2

  • Online ISBN: 978-3-030-32248-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics