Skip to main content

The Hidden Risks of E-Waste: Perspectives from Environmental Engineering, Epidemiology, Environmental Health, and Human–Computer Interaction

  • Chapter
  • First Online:
Transforming Global Health

Abstract

Electronic waste (e-waste) is a rising global environmental and health inequity issue. Rapid and excessive manufacture and use of electronics is causing global e-waste buildup. While there is an opportunity to recover important and/or expensive resources (e.g., recovery of plastic, copper, gold, and platinum) via recycling, these discarded electronics contain many hazardous contaminants including heavy metals (e.g., lead, chromium, copper, mercury, nickel, zinc) and organic compounds (e.g., halogenated flame retardants). Each of these chemicals has been linked with adverse health effects, i.e., respiratory diseases, impairment of central nervous systems, carcinogenesis, and others. Because proper and safe e-waste recycling is expensive, informal recycling abounds, and illegal flows of e-waste (~60–90% of globally produced e-waste) occur from high- to low- and middle-income countries (LMICs). The informal repair and recycling of electronic devices in LMICs often occur without implementing proper protective measures for the workers or their environment. Commonly, e-waste repair/recycling workers are from poor and marginalized populations and in many cases, represent highly susceptible groups, such pregnant women and children. In this chapter, we discuss how the technological advancement of the electronics field has given rise to a worldwide problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. WHO. Air pollution causes 1 in 9 deaths worldwide. http://www.who.int/airpollution/en/. Accessed 3 Oct 2018.

  2. Hajat A, Hsia C, O’Neill MS. Socioeconomic disparities and air pollution exposure: a global review. Curr Environ Health Rep. 2015;2(4):440–50. https://doi.org/10.1007/s40572-015-0069-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Townsend TG. Environmental issues and management strategies for waste electronic and electrical equipment. J Air Waste Manag Assoc. 2011;61(6):587–610.

    Article  CAS  Google Scholar 

  4. Balde CP, Kuehr R, Blumenthal K, Fondeur Gill S, Kern M, Micheli P, Magpantay E, Huisman J. E-waste statistics-guidelines on classification, reporting and indicators. Bonn: United Nations University, IAS-SCYCLE; 2015. p. 51.

    Google Scholar 

  5. Balde CP, Forti V, Gray V, Kuehr R, Stegmann P. The global e-waste monitor 2017: quantities, flows and resources: United Nations University, International Telecommunication Union, and International Solid Waste Association; 2017.

    Google Scholar 

  6. Chi X, Streicher-Porte M, Wang MY, Reuter MA. Informal electronic waste recycling: a sector review with special focus on China. Waste Manag. 2011;31(4):731–42. https://doi.org/10.1016/j.wasman.2010.11.006.

    Article  PubMed  Google Scholar 

  7. Robinson BH. E-waste: an assessment of global production and environmental impacts. Sci Total Environ. 2009;408(2):183–91. https://doi.org/10.1016/j.scitotenv.2009.09.044.

    Article  CAS  PubMed  Google Scholar 

  8. Zaman H, Zaman R. Achieving digital Bangladesh by 2021 and beyond: background paper for the 7th five year plan (7FYP). 2015.

    Google Scholar 

  9. bdnews24. Mobile phone users in Bangladesh top 140 million. 2017. https://bdnews24.com/business/2017/11/14/mobile-phone-users-in-bangladesh-top-140-million.

  10. Rabbi HR, Rahman A. Ship breaking and recycling industry of Bangladesh; issues and challenges. Procedia Engineering. 2017;194:254–9. https://doi.org/10.1016/j.proeng.2017.08.143.

    Article  Google Scholar 

  11. ESDO. Magnitude of the flow of E-waste in Bangladesh. Dhaka: Environmental and Social Development Organization (ESDO); 2015.

    Google Scholar 

  12. Rifat MR, Prottoy HM, Ahmed SI. The breaking hand: knowledge, care, and sufferings of the hand of an electronic waste worker in Bangladesh. In: Paper presented at the 37th annual ACM conference on human factors in computing systems (CHI), Glasgow, UK; 2019.

    Google Scholar 

  13. Rifat, MR, Aich N, Prottoy HM, Ahmed SI. Understanding the opportunities and challenges in e-waste management practices in Dhaka, Bangladesh. In: Paper presented at the ACM CHI conference on human factors in computing systems, SIGCHI, Montreal, Canada. 2018.

    Google Scholar 

  14. Dai Q, Min X, Weng M. A review of polychlorinated biphenyls (PCBs) pollution in indoor air environment. J Air Waste Manage Assoc. 2016;66(10):941–50. https://doi.org/10.1080/10962247.2016.1184193.

    Article  CAS  Google Scholar 

  15. Song Q, Li J. Environmental effects of heavy metals derived from the e-waste recycling activities in China: a systematic review. Waste Manag. 2014;34(12):2587–94. https://doi.org/10.1016/j.wasman.2014.08.012.

    Article  CAS  PubMed  Google Scholar 

  16. Fu J, Zhou Q, Liu J, Liu W, Wang T, Zhang Q, Jiang G. High levels of heavy metals in rice (Oryzasativa L.) from a typical E-waste recycling area in Southeast China and its potential risk to human health. Chemosphere. 2008;71(7):1269–75. https://doi.org/10.1016/j.chemosphere.2007.11.065.

    Article  CAS  PubMed  Google Scholar 

  17. Song Y, Wu N, Han J, Shen H, Tan Y, Ding G, Xiang J, He T, Jin S. Levels of PCDD/Fs and DL-PCBs in selected foods and estimated dietary intake for the local residents of Luqiao and Yuhang in Zhejiang, China. Chemosphere. 2011;85(3):329–34. https://doi.org/10.1016/j.chemosphere.2011.06.094.

    Article  CAS  PubMed  Google Scholar 

  18. Song Q, Li J. A systematic review of the human body burden of e-waste exposure in China. Environ Int. 2014;68:82–93. https://doi.org/10.1016/j.envint.2014.03.018.

    Article  CAS  PubMed  Google Scholar 

  19. Grant K, Goldizen FC, Sly PD, Brune M-N, Neira M, van den Berg M, Norman RE. Health consequences of exposure to e-waste: a systematic review. Lancet Glob Health. 2013;1(6):e350–61. https://doi.org/10.1016/S2214-109X(13)70101-3.

    Article  PubMed  Google Scholar 

  20. Song Q, Li J. A review on human health consequences of metals exposure to e-waste in China. Environ Pollut. 2015;196:450–61. https://doi.org/10.1016/j.envpol.2014.11.004.

    Article  CAS  PubMed  Google Scholar 

  21. Wen S, Gong Y, Li JG, Shi TM, Zhao YF, YongNing W. Particle-bound PCDD/Fs in the atmosphere of an electronic waste dismantling area in China. Biomed Environ Sci. 2011;24(2):102–11. https://doi.org/10.3967/0895-3988.2011.02.003.

    Article  CAS  PubMed  Google Scholar 

  22. Ma J, Kannan K, Cheng J, Horii Y, Wu Q, Wang W. Concentrations, profiles, and estimated human exposures for polychlorinated dibenzo-p-dioxins and dibenzofurans from electronic waste recycling facilities and a chemical industrial complex in eastern China. Environ Sci Technol. 2008;42(22):8252–9. https://doi.org/10.1021/es8017573.

    Article  CAS  PubMed  Google Scholar 

  23. Li H, Yu L, Sheng G, Jiamo F, Peng P’a. Severe PCDD/F and PBDD/F pollution in air around an electronic waste dismantling area in China. Environ Sci Technol. 2007;41(16):5641–6. https://doi.org/10.1021/es0702925.

    Article  CAS  PubMed  Google Scholar 

  24. Guo Y, Huo X, Li Y, Wu K, Liu J, Huang J, Zheng G, et al. Monitoring of lead, cadmium, chromium and nickel in placenta from an e-waste recycling town in China. Sci Total Environ. 2010;408(16):3113–7. https://doi.org/10.1016/j.scitotenv.2010.04.018.

    Article  CAS  PubMed  Google Scholar 

  25. Leung AOW, Chan JKY, Xing GH, Ying X, Sheng Chun W, Wong CKC, Leung CKM, Wong MH. Body burdens of polybrominated diphenyl ethers in childbearing-aged women at an intensive electronic-waste recycling site in China. J Environ Sci Pollut Res. 2010;17(7):1300–13. https://doi.org/10.1007/s11356-010-0310-6.

    Article  CAS  Google Scholar 

  26. Wu K, Xu X, Liu J, Guo Y, Li Y, Huo X. Polybrominated diphenyl ethers in umbilical cord blood and relevant factors in neonates from Guiyu, China. Environ Sci Technol. 2010;44(2):813–9. https://doi.org/10.1021/es9024518.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao Y, Ruan X, Li Y, Yan M, Qin Z. Polybrominated Diphenyl ethers (PBDEs) in aborted human fetuses and placental transfer during the first trimester of pregnancy. Environ Sci Technol. 2013;47(11):5939–46. https://doi.org/10.1021/es305349x.

    Article  CAS  PubMed  Google Scholar 

  28. Xing GH, Chan JKY, Leung AOW, Wu SC, Wong MH. Environmental impact and human exposure to PCBs in Guiyu, an electronic waste recycling site in China. Environ Int. 2009;35(1):76–82. https://doi.org/10.1016/j.envint.2008.07.025.

    Article  CAS  PubMed  Google Scholar 

  29. Ju Y, Xu G, Chen L, Jiang Q, Li L, Yang K, Chen X. Analyses of levels of thyroid hormones and its receptor expression in puerperants and newborns from an e-waste dismantling site. J Front Med China. 2008;2(3):276–82. https://doi.org/10.1007/s11684-008-0052-8.

    Article  Google Scholar 

  30. Yuan J, Chen L, Chen D, Guo H, Bi X, Ying J, Jiang P, et al. Elevated serum polybrominated diphenyl ethers and thyroid-stimulating hormone associated with lymphocytic micronuclei in Chinese workers from an E-waste dismantling site. Environ Sci Technol. 2008;42(6):2195–200. https://doi.org/10.1021/es702295f.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang J, Jiang Y, Zhou J, Bin W, Liang Y, Peng Z, Fang D, et al. Elevated body burdens of PBDEs, dioxins, and PCBs on thyroid hormone homeostasis at an electronic waste recycling site in China. Environ Sci Technol. 2010;44(10):3956–62. https://doi.org/10.1021/es902883a;.

    Article  CAS  PubMed  Google Scholar 

  32. Wang H, Zhang Y, Liu Q, Wang F, Nie J, Qian Y. Examining the relationship between brominated flame retardants (BFR) exposure and changes of thyroid hormone levels around e-waste dismantling sites. Int J Hyg Environ Health. 2010;213(5):369–80. https://doi.org/10.1016/j.ijheh.2010.06.004.

    Article  CAS  PubMed  Google Scholar 

  33. Zheng G, Xu X, Li B, Wu K, Yekeen TA, Huo X. Association between lung function in school children and exposure to three transition metals from an e-waste recycling area. J Expos Sci Environ Epidemiol. 2012;23:67. https://doi.org/10.1038/jes.2012.84.

    Article  CAS  Google Scholar 

  34. Huo X, Lin P, Xu X, Zheng L, Qiu B, Qi Z, Bao Z, Han D, Piao Z. Elevated blood lead levels of children in Guiyu, an electronic waste recycling town in China. Environ Health Perspect. 2007;115(7):1113–7. https://doi.org/10.1289/ehp.9697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu K, Xu X, Lin P, Liu J, Guo Y, Huo X. Association between maternal exposure to perfluorooctanoic acid (PFOA) from electronic waste recycling and neonatal health outcomes. Environ Int. 2012;48:1–8. https://doi.org/10.1016/j.envint.2012.06.018.

    Article  CAS  PubMed  Google Scholar 

  36. Xu X, Yang H, Chen A, Zhou Y, Wu K, Liu J, Zhang Y, Huo X. Birth outcomes related to informal e-waste recycling in Guiyu, China. Reprod Toxicol. 2012;33(1):94–8. https://doi.org/10.1016/j.reprotox.2011.12.006.

    Article  CAS  PubMed  Google Scholar 

  37. Bakhiyi B, Gravel S, Ceballos D, Flynn MA, Zayed J. Has the question of e-waste opened a Pandora’s box? An overview of unpredictable issues and challenges. Environment International. 2018;110:173–92. https://doi.org/10.1016/j.envint.2017.10.021.

    Article  PubMed  Google Scholar 

  38. Heacock M, Kelly CB, Asante KA, Birnbaum LS, Bergman ÅL, Bruné M-N, Buka I, et al. E-waste and harm to vulnerable populations: a growing global problem. Environ Health Perspect. 2016;124(5):550–5. https://doi.org/10.1289/ehp.1509699.

    Article  CAS  PubMed  Google Scholar 

  39. Cao J, Lu B, Chen Y, Zhang X, Zhai G, Zhou G, Jiang B, Schnoor JL. Extended producer responsibility system in China improves e-waste recycling: government policies, enterprise, and public awareness. Renew Sust Energ Rev. 2016;62:882–94. https://doi.org/10.1016/j.rser.2016.04.078.

    Article  Google Scholar 

  40. Kumar A, Holuszko M, Espinosa DCR. E-waste: an overview on generation, collection, legislation and recycling practices. Resour Conserv Recycl. 2017;122:32–42. https://doi.org/10.1016/j.resconrec.2017.01.018.

    Article  Google Scholar 

  41. Ahmed FRS. E-waste management scenario in Bangladesh: Department of Environment, Government of Bangladesh; 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirupam Aich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aich, N., Kordas, K., Ahmed, S.I., Sabo-Attwood, T. (2020). The Hidden Risks of E-Waste: Perspectives from Environmental Engineering, Epidemiology, Environmental Health, and Human–Computer Interaction. In: Smith, K., Ram, P. (eds) Transforming Global Health. Springer, Cham. https://doi.org/10.1007/978-3-030-32112-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32112-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32111-6

  • Online ISBN: 978-3-030-32112-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics