Skip to main content

A Review on the Vehicle to Vehicle and Vehicle to Infrastructure Communication

  • Conference paper
  • First Online:
Man-Machine Interactions 6 (ICMMI 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1061 ))

Included in the following conference series:

  • 448 Accesses

Abstract

This paper presents the literature review on wireless technologies that could be used for Vehicle to Vehicle and Vehicle to Infrastructure communication. It presents the current and emerging technologies together with the results of the research made to prove the usability of network technologies in demanding vehicular data communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abboud, K., Omar, H.A., Zhuang, W.: Interworking of DSRC and cellular network technologies for V2X communications: a survey. IEEE Trans. Veh. Technol. 65(12), 9457–9470 (2016). https://doi.org/10.1109/TVT.2016.2591558

    Article  Google Scholar 

  2. Acosta-marum, G., Ingram, M.A.: Doubly selective vehicle-to-vehicle channel measurements and modeling at 5.9 GHz. In: Proceedings of the International Symposium on Wireless Personal Multimedia Communications, San Diego, CA (2006). https://doi.org/10.1.1.324.3149

  3. Alanezi, M.A.: A proposed system for vehicle-to-vehicle communication: low cost and network free approach. Indian J. Sci. Technol. 11(12) (2018). http://www.indjst.org/index.php/indjst/article/view/121337

  4. Anaya, J.J., Ponz, A., García, F., Talavera, E.: Motorcycle detection for ADAS through camera and V2V communication, a comparative analysis of two modern technologies. Expert. Syst. Appl. 77, 148–159 (2017). https://doi.org/10.1016/j.eswa.2017.01.032. http://www.sciencedirect.com/science/article/pii/S0957417417300416

    Article  Google Scholar 

  5. Araniti, G., Campolo, C., Condoluci, M., Iera, A., Molinaro, A.: LTE for vehicular networking: a survey. IEEE Commun. Mag. 51(5), 148–157 (2013). https://doi.org/10.1109/MCOM.2013.6515060

    Article  Google Scholar 

  6. Balasubramanian, A., Mahajan, R., Venkataramani, A., Levine, B.N., Zahorjan, J.: Interactive WiFi connectivity for moving vehicles. In: Proceedings of the ACM SIGCOMM 2008 Conference on Data Communication, SIGCOMM 2008, pp. 427–438. ACM, New York (2008). https://doi.org/10.1145/1402958.1403006. http://doi.acm.org/10.1145/1402958.1403006

  7. Boban, M., Manolakis, K., Ibrahim, M., Bazzi, S., Xu, W.: Design aspects for 5G V2X physical layer. In: 2016 IEEE Conference on Standards for Communications and Networking (CSCN), pp. 1–7 (2016). https://doi.org/10.1109/CSCN.2016.7785161

  8. Boussoufa-Lahlah, S., Semchedine, F., Bouallouche-Medjkoune, L.: Geographic routing protocols for vehicular ad hoc networks (VANETs): a survey. Veh. Commun. 11, 20–31 (2018). https://doi.org/10.1016/j.vehcom.2018.01.006. http://www.sciencedirect.com/science/article/pii/S2214209616300183

    Article  Google Scholar 

  9. Chen, S.z., Kang, S.l.: A tutorial on 5G and the progress in China. Front. Inf. Technol. Electron. Eng. 19(3), 309–321 (2018). https://doi.org/10.1631/FITEE.1800070

    Article  Google Scholar 

  10. Cheng, X., Zhang, R., Yang, L.: Wireless-vehicle combination: advanced PHY techniques in VCN, pp. 41–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-02176-4_3

    Google Scholar 

  11. Dedicated Short Range Communications (DSRC) Service: Dedicated Short Range Communications (DSRC) Service (2019)

    Google Scholar 

  12. Deshpande, P., Kashyap, A., Sung, C., Das, S.R.: Predictive methods for improved vehicular WiFi access. In: Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services, MobiSys 2009, pp. 263–276. ACM, New York (2009). https://doi.org/10.1145/1555816.1555843. http://doi.acm.org/10.1145/1555816.1555843

  13. Dong, P., Zheng, T., Yu, S., Zhang, H., Yan, X.: Enhancing vehicular communication using 5G-enabled smart collaborative networking. IEEE Wirel. Commun. 24(6), 72–79 (2017). https://doi.org/10.1109/MWC.2017.1600375

    Article  Google Scholar 

  14. Festag, A.: Standards for vehicular communication-from IEEE 802.11p to 5G. e & i Elektrotechnik und Informationstechnik 132(7), 409–416 (2015). https://doi.org/10.1007/s00502-015-0343-0

    Article  Google Scholar 

  15. Fitah, A., Badri, A., Moughit, M., Sahel, A.: Performance of DSRC and WiFi for intelligent transport systems in VANET. Procedia Comput. Sci. 127, 360–368 (2018). https://doi.org/10.1016/j.procs.2018.01.133. http://www.sciencedirect.com/science/article/pii/S1877050918301455, Proceedings of the First International Conference on Intelligent Computing in Data Sciences, ICDS2017

    Article  Google Scholar 

  16. Fonseca, A., Vazão, T.: Applicability of position-based routing for VANET in highways and urban environment. J. Netw. Comput. Appl. 36(3), 961–973 (2013). https://doi.org/10.1016/j.jnca.2012.03.009. http://www.sciencedirect.com/science/article/pii/S1084804512000768

    Article  Google Scholar 

  17. Fuchs, H., Hofmann, F., Löhr, H., Schaaf, G.: Vehicle-2-X. In: Winner, H., Hakuli, S., Lotz, F., Singer, C. (eds.) Handbook of Driver Assistance Systems: Basic Information, Components and Systems for Active Safety and Comfort, pp. 1–17. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09840-1_28-1

    Chapter  Google Scholar 

  18. Gehrig, S.K., Stein, F.J.: Collision avoidance for vehicle-following systems. IEEE Trans. Intell. Transp. Syst. 8(2), 233–244 (2007). https://doi.org/10.1109/TITS.2006.888594

    Article  Google Scholar 

  19. Ghatwai, N.G., Harpale, V.K., Kale, M.: Vehicle to vehicle communication for crash avoidance system. In: 2016 International Conference on Computing Communication Control and Automation (ICCUBEA), pp. 1–3 (2016). https://doi.org/10.1109/ICCUBEA.2016.7860118

  20. Hasan, S.F., Siddique, N., Chakraborty, S.: Wireless technology for vehicles, pp. 1–17. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64057-0_1

    Google Scholar 

  21. Hu, L., Eichinger, J., Dillinger, M., Botsov, M., Gozalvez, D.: Unified device-to-device communications for low-latency and high reliable vehicle-to-x services. In: 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), pp. 1–7 (2016). https://doi.org/10.1109/VTCSpring.2016.7504518

  22. Jansons, J., Petersons, E., Bogdanovs, N.: Vehicle-to-infrastructure communication based on 802.11n wireless local area network technology. In: 2012 2nd Baltic Congress on Future Internet Communications, pp. 26–31 (2012). https://doi.org/10.1109/BCFIC.2012.6217975

  23. Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., Weil, T.: Vehicular networking: a survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Commun. Surv. Tutor. 13(4), 584–616 (2011). https://doi.org/10.1109/SURV.2011.061411.00019

    Article  Google Scholar 

  24. Kombate, D., Wanglina: The internet of vehicles based on 5G communications. In: 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 445–448 (2016). https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.105

  25. Lee, J., Park, B.: Development and evaluation of a cooperative vehicle intersection control algorithm under the connected vehicles environment. IEEE Trans. Intell. Transp. Syst. 13(1), 81–90 (2012). https://doi.org/10.1109/TITS.2011.2178836

    Article  Google Scholar 

  26. Lianghai, J., Liu, M., Weinand, A., Schotten, H.D.: Direct vehicle-to-vehicle communication with infrastructure assistance in 5G network. In: 2017 16th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), pp. 1–5 (2017). https://doi.org/10.1109/MedHocNet.2017.8001639

  27. Liu, K., Ng, J.K.Y., Lee, V.C.S., Son, S.H., Stojmenovic, I.: Cooperative data scheduling in hybrid vehicular ad hoc networks: VANET as a software defined network. IEEE/ACM Trans. Netw. 24(3), 1759–1773 (2016). https://doi.org/10.1109/TNET.2015.2432804

    Article  Google Scholar 

  28. Liu, K., Son, S.H., Lee, V.C.S., Kapitanova, K.: A token-based admission control and request scheduling in lane reservation systems. In: 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 1489–1494 (2011). https://doi.org/10.1109/ITSC.2011.6082959

  29. Mahmood, A., Butler, B., Sheng, Q., Zhang, W.E., Jennings, B.: Need of ambient intelligence for next-generation connected and autonomous vehicles: principles, technologies and applications. In: Guide to Ambient Intelligence in the IoT Environment. Computer Communications and Networks, pp. 133–151. Springer (2019). https://doi.org/10.1007/978-3-030-04173-1_6

    Google Scholar 

  30. Matsumoto, A., Yoshimura, K., Aust, S., Ito, T., Kondo, Y.: Performance evaluation of IEEE 802.11n devices for vehicular networks. In: 2009 IEEE 34th Conference on Local Computer Networks, pp. 669–670 (2009). https://doi.org/10.1109/LCN.2009.5355054

  31. Merz, R., Wenger, D., Scanferla, D., Mauron, S.: Performance of LTE in a high-velocity environment: a measurement study. In: Proceedings of the 4th Workshop on All Things Cellular: Operations, Applications, & Challenges, All Things Cellular 2014, pp. 47–52. ACM, New York (2014). https://doi.org/10.1145/2627585.2627589. http://doi.acm.org/10.1145/2627585.2627589

  32. Mouton, M., Castignani, G., Frank, R., Engel, T.: Enabling vehicular mobility in city-wide IEEE 802.11 networks through predictive handovers. Veh. Commun. 2(2), 59–69 (2015). https://doi.org/10.1016/j.vehcom.2015.02.001. http://www.sciencedirect.com/science/article/pii/S2214209615000108

    Article  Google Scholar 

  33. Muhammad, M., Safdar, G.A.: Survey on existing authentication issues for cellular-assisted V2X communication. Veh. Commun. 12, 50–65 (2018). https://doi.org/10.1016/j.vehcom.2018.01.008. http://www.sciencedirect.com/science/article/pii/S2214209617302267

    Article  Google Scholar 

  34. Ozguner, U., Ozguner, F., Fitz, M., Takeshita, O., Redmill, K., Zhu, W., Dogan, A.: Inter-vehicle communication: recent developments at Ohio state university. In: Intelligent Vehicle Symposium, 2002, vol. 2, pp. 570–575 (2002). https://doi.org/10.1109/IVS.2002.1188013

  35. Salvatori, E.: 5G and car-to-x key technologies for autonomous road transport. ATZelektronik Worldw. 11(6), 26–31 (2016). https://doi.org/10.1007/s38314-016-0083-x

    Article  Google Scholar 

  36. Sen, I., Matolak, D.W.: Vehicle-vehicle channel models for the 5-GHz band. IEEE Trans. Intell. Transp. Syst. 9(2), 235–245 (2008). https://doi.org/10.1109/TITS.2008.922881

    Article  Google Scholar 

  37. Singh, P.K., Sharma, S., Nandi, S.K., Nandi, S.: Multipath TCP for V2i communication in SDN controlled small cell deployment of smart city. Vehicular Communications 15, 1–15 (2019). https://doi.org/10.1016/j.vehcom.2018.11.002. http://www.sciencedirect.com/science/article/pii/S2214209618301049

    Article  Google Scholar 

  38. Stoumpis, G., Karabetsos, S., Nassiopoulos, A.: An experimental framework for studying LTE and LTE-advanced. In: Proceedings of the 19th Panhellenic Conference on Informatics, PCI 2015, pp. 275–280 (2015). https://doi.org/10.1145/2801948.2801985

  39. Kim, T.M., Choi, J.W.: Implementation of inter-vehicle communication system for vehicle platoon experiments via testbed. In: SICE 2003 Annual Conference (IEEE Cat. No.03TH8734), vol. 3, pp. 3414–3419 (2003)

    Google Scholar 

  40. West Conshohocken, PA: Standard specification for telecommunications and information exchange between roadside and vehicle systems—5-GHz band dedicated short-range communications (DSRC), medium access control (MAC), and physical layer (PHY) specifications. Technical report, West Conshohocken, PA (2018). https://doi.org/10.1520/E2213-03R18

  41. Wu, X., Li, J., Scopigno, R.M., Cozzetti, H.A.: Insights into possible VANET 2.0 directions. In: Campolo, C., Molinaro, A., Scopigno, R. (eds.) Vehicular ad hoc Networks: Standards, Solutions, and Research, pp. 411–455. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15497-8_15

    Chapter  Google Scholar 

  42. Yan, G., Rawat, D.B.: Vehicle-to-vehicle connectivity analysis for vehicular ad-hoc networks. Ad Hoc Netw. 58, 25–35 (2017). https://doi.org/10.1016/j.adhoc.2016.11.017. http://www.sciencedirect.com/science/article/pii/S1570870516303274, Hybrid Wireless Ad Hoc Networks

    Article  Google Scholar 

Download references

Acknowledgements

This work was part of the scientific internship in the research project no. POIR.01 .01.01-00-1398/15 entitled “Development of innovative technologies in the field of active safety, which will be used in advanced driver assistance systems (ADAS) and autonomous driving systems intended for mass production” and supported by the National Centre for Research and Development in the years 2016–2020 in Poland.

The work presented in this paper was partially supported by Statutory Research funds of Institute of Informatics, Silesian University of Technology, Gliwice, Poland (grant No BK/204/RAU2/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Tokarz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tokarz, K. (2020). A Review on the Vehicle to Vehicle and Vehicle to Infrastructure Communication. In: Gruca, A., Czachórski, T., Deorowicz, S., Harężlak, K., Piotrowska, A. (eds) Man-Machine Interactions 6. ICMMI 2019. Advances in Intelligent Systems and Computing, vol 1061 . Springer, Cham. https://doi.org/10.1007/978-3-030-31964-9_5

Download citation

Publish with us

Policies and ethics