Skip to main content

Active Spectral Absorption Control in a Tunable Liquid Crystal/Metamaterial Structure by Polarization Plane Rotation

  • Conference paper
  • First Online:
4th International Conference on Nanotechnologies and Biomedical Engineering (ICNBME 2019)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 77))

Abstract

We present theoretical studies conducted on the newly-introduced controllable metamaterial—liquid crystal system. Our model consists of a standard metamaterial single cell split ring resonator array with dimensions tailored to match a desired frequency in the infrared frequency regime, with an added liquid crystal layer, in order to control the refractive index surrounding the resonator array. We show that this type of system can show controllable spectral absorption in the desired range, making them suitable for a range of optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai, W., Shalaev, V.: Optical Metamaterials. Springer, New York (2010)

    Book  Google Scholar 

  2. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)

    Article  Google Scholar 

  3. Eleftheriades, G.V., Balmain, K.G. (ed.): Negative-refraction metamaterials. IEEE Press, Wiley Interscience (2005)

    Google Scholar 

  4. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000). https://doi.org/10.1103/PhysRevLett.84.4184

    Article  Google Scholar 

  5. Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001). https://doi.org/10.1126/science.1058847

    Article  Google Scholar 

  6. Veselago, V.G.: Electrodynamics of materials with negative index of refraction. UFN J. 173(7), 790–794 (1968). https://doi.org/10.3367/UFNr.0173.200307m.0790

    Article  Google Scholar 

  7. Ritchie, R.H.: Plasma losses by fast electrons. Phys. Rev. 106, 874–881 (1957)

    Article  MathSciNet  Google Scholar 

  8. Iyer, A.K., Kremer, P.C., Eleftheriades, G.V.: Experimental and theoretical verification of focusing in a large periodically loaded transmission line negative refractive index metamaterial. Opt. Express 11, 696–708 (2003)

    Article  Google Scholar 

  9. Grbic, A., Eleftheriades, G.V.: Experimental verification of backward-wave radiation from a negative refractive index metamaterial. J. Appl. Phys. 92, 5930–5935 (2002)

    Article  Google Scholar 

  10. Pendry, J.B., Holden, A.J., Stewart, W.J., Youngs, I.: Extremely low frequency plasmons in metallic microstructures. Phys. Rev. Lett. 76, 4773–4776 (1996)

    Article  Google Scholar 

  11. Alu, A., Engheta, N.: Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72, 016623 (2005)

    Article  Google Scholar 

  12. Schurig, D., et al.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)

    Article  MathSciNet  Google Scholar 

  13. Cai, W., Chettiar, U.K., Kildishev, A.V., Shalaev, V.: Optical cloaking with metamaterials. Nat. Photon. 1, 224–227 (2007). https://doi.org/10.1038/nphoton.2007.28

    Article  Google Scholar 

  14. Grover, B., Rubin, N.A., Balthasar, J.P., Devlin, R.C., Capasso, F.: High-efficiency chiral meta-lens. Sci. Rep. 8, 7240 (2018). https://doi.org/10.1038/s41598-018-25675-3

    Article  Google Scholar 

  15. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000). https://doi.org/10.1103/PhysRevLett.85.3966

    Article  Google Scholar 

  16. Jahani, S., Jacob, Z.: All-dielectric metamaterials. Nat. Nanotech. 11, 23–26 (2016). https://doi.org/10.1038/nnano.2015.304

    Article  Google Scholar 

  17. Walia, S., et al.: Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales. Appl. Phys. Rev. 2, 011303 (2015). https://doi.org/10.1063/1.4913751

    Article  Google Scholar 

  18. Rosu, C., Manaila Maximean, D., Kundu, S., Almeida, P.L., Danila, O.: Perspectives on the electrically induced properties of nematic liquid crystal/copolymer particles composite. J. Electrostat. 69, 623–630 (2011). https://doi.org/10.1016/j.elstat.2011.08.009

    Article  Google Scholar 

  19. Manaila Maximean, D., Danila, O., Stefanescu, B., Bena, R., Rosu, C., Donescu, D., Eugeniu, V.: Study of a new composite: polymer-magnetite particles/lyotropic liquid crystal. In: 3rd International Conference on Nontechnologies and Biomedical Engineering. Springer IFMBE Proceedings, vol. 55, pp. 226–229 (2015). https://doi.org/10.1007/979-981-287-736-9_56

  20. Manaila Maximean, D., Danila, O., Almeida, P.L., Ganea, C.P.: Electrical properties of a liquid crystal dispersed in an electrospun cellulose acetate network. Beilstein J. Nanotech. 9, 155–163 (2018)

    Article  Google Scholar 

  21. Loiko, N.A., Miskevich, A.A., Loiko, V.A.: Method for describing the angular distribution of optical radiation scattered by a monolayer of ordered spherical particles (normal illumination). J. Exp. Theor. Phys. 126(2), 159–173 (2018). https://doi.org/10.1134/S1063776118020139

    Article  Google Scholar 

  22. Loiko, N.A., Miskevich, A.A., Loiko, V.A.: Incoherent component of light scattered by a monolayer of spherical particles: analysis of angular distribution and absorption of light. J. Opt. Soc. Am. A 35(1), 108–118 (2018). https://doi.org/10.1034/JOSAA.35.000108

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Romanian Academy for support in the frame of the Joint Research Project: Romanian Academy—National Academy of Sciences in Belarus, 2019, and the Belarusian Foundation for Fundamental Research (BRFFR), project F18PA-003.

Conflict of Interest The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Dănilă .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bărar, A., Dănilă, O., Mănăilă-Maximean, D., Loiko, V.A. (2020). Active Spectral Absorption Control in a Tunable Liquid Crystal/Metamaterial Structure by Polarization Plane Rotation. In: Tiginyanu, I., Sontea, V., Railean, S. (eds) 4th International Conference on Nanotechnologies and Biomedical Engineering. ICNBME 2019. IFMBE Proceedings, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-030-31866-6_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31866-6_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31865-9

  • Online ISBN: 978-3-030-31866-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics