Skip to main content

A Comparison of Denoising Algorithms for Effective Edge Detection in X-Ray Fluoroscopy

  • Conference paper
  • First Online:
XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019 (MEDICON 2019)

Abstract

X-ray fluoroscopy provides various diagnosis and is widely used in interventional radiology. However, the low-dose involved in fluoroscopy generates an intense Poisson-distributed quantum noise. Object recognition and tracking help in many fluoroscopic applications. Edge-detection is essential, but common derivative operators require noise suppression to provide reliable results. Moreover, homoscedasticity of noise is generally assumed, but is not the case of fluoroscopic images. However, the Anscombe transform can stabilize the quantum noise variance. This study presents a comparison of two denoising algorithms to evaluate their performance in edge-detection for real fluoroscopic sequences. VBM4D is one of best video-processing method for Additive White Gaussian Noise (AWGN), while Noise Variance Conditioned Average (NVCA) is a recent, real-time, algorithm specifically tailored for fluoroscopy. Some real fluoroscopic sequences screening the motion of lumbar spine were processed. Noise parameters were estimated using image sequences of a static scene: the relationship between the luminance and the noise variance was obtained. Generalised Anscombe transform and its inverse were applied to use the VBM4D algorithm. Edge-detection was performed by means of the Sobel operator. The Anscombe transform resulted able to stabilise the noise variance and consequently allow the use of algorithms designed for AWGN. The results show that both approaches provide effective identification of object contours (i.e. vertebral bodies). Despite of its simplicity the NVCA algorithm shows better performances than VBM4D on delineation of boundaries of examined spine fluoroscopic scenes. Furthermore, the NVCA algorithm can be realized in hardware and can offer real-time fluoroscopic processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bifulco, P., Cesarelli, M., Cerciello, T., Romano, M.: A continuous description of intervertebral motion by means of spline interpolation of kinematic data extracted by video fluoroscopy. J. Biomech. 45(4), 634–641 (2012). https://doi.org/10.1016/j.jbiomech.2011.12.022

    Article  Google Scholar 

  2. Weese, J., Penney, G.P., Desmedt, P., Buzug, T.M., Hill, D.L.G., Hawkes, D.J.: Voxel-based 2-D/3-D registration of fluoroscopy images and CT scans for image-guided surgery. IEEE Trans. Inf. Technol. Biomed. 1(4), 284–293 (1997). https://doi.org/10.1109/4233.681173

    Article  Google Scholar 

  3. Yamazaki, T., et al.: Improvement of depth position in 2-D/3-D registration of knee implants using single-plane fluoroscopy. IEEE Trans. Med. Imaging 23(5), 602–612 (2004)

    Article  Google Scholar 

  4. Wang, J., Zhu, L., Xing, L.: Noise reduction in low-dose X-ray fluoroscopy for image-guided radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 74(2), 637–643 (2009)

    Article  Google Scholar 

  5. Cerciello, T., Romano, M., Bifulco, P., Cesarelli, M., Allen, R.: Advanced template matching method for estimation of intervertebral kinematics of lumbar spine. Med. Eng. Phys. 33(10), 1293–1302 (2011). https://doi.org/10.1016/j.medengphy.2011.06.009

    Article  Google Scholar 

  6. Bifulco, P., Cesarelli, M., Romano, M., Fratini, A., Sansone, M.: Measurement of intervertebral cervical motion by means of dynamic x-ray image processing and data interpolation. Int. J. Biomed. Imaging 2013, 152920 (2013). https://doi.org/10.1155/2013/152920. Published online 31 Oct 2013

    Article  Google Scholar 

  7. Cesarelli, M., Bifulco, P., Cerciello, T., Romano, M., Paura, L.: X-ray fluoroscopy noise modeling for filter design. Int. J. Comput. Assist. Radiol. Surg. 8(2) (2012). https://doi.org/10.1007/s11548-012-0772-8

    Article  Google Scholar 

  8. Ma, L., Moisan, L., Yu, J., Zeng, T.: A dictionary learning approach for poisson image deblurring. IEEE Trans. Med. Imaging 32(7), 1277–1289 (2013). https://doi.org/10.1109/TMI.2013.2255883

    Article  Google Scholar 

  9. Lefkimmiatis, S., Maragos, P., Papandreou, G.: Bayesian inference on multiscale models for Poisson intensity estimation: applications to photon-limited image denoising. IEEE Trans. Image Process. 18(8), 1724–1741 (2009). https://doi.org/10.1109/TIP.2009.2022008

    Article  MathSciNet  MATH  Google Scholar 

  10. Tapiovaara, M.J.: SNR and noise measurements for medical imaging: II. application to fluoroscopic X-ray equipment. Phys. Med. Biol. 38(2), 1761–1788 (1993)

    Article  Google Scholar 

  11. Aufrichtig, R., Wilson, D.L.: X-ray fluoroscopy spatio-temporal filtering with object detection. IEEE Trans. Med. Imaging 14(4), 733–746 (1995). https://doi.org/10.1109/42.476114

    Article  Google Scholar 

  12. Goswami, B., Misra, S.K.: Analysis of various edge detection methods for x-ray images. In: 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), pp. 2694–2699 (2016)

    Google Scholar 

  13. Juneja, M., Singh Sandhu, P.: Performance evaluation of edge detection techniques for images in spatial domain. Int. J. Comput. Theory Eng. 1(5), 1793–8201 (2009)

    Google Scholar 

  14. Bhardwaj, S., Mittal, A.: A survey on various edge detector techniques. Procedia Technol. 4, 220–226 (2012)

    Article  Google Scholar 

  15. Pratt, W.K.: Digital Image Processing, 4th edn. Wiley (2007)

    Google Scholar 

  16. Bovik, A.: The Essential Guide to Image Processing. Academic Press (2009)

    Google Scholar 

  17. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. B Biol. Sci. 207, 187–217 (1980)

    Article  Google Scholar 

  18. Canny, J.F.: A computational approach to edge detection. IEEE Trans. PAMI 8(6), 679–698 (1986)

    Article  Google Scholar 

  19. Haralick, R.M., Lee, J.: Context dependent edge detector. In: Proceedings of CVPR 1988, pp. 223–228, Ann Arbor, Michigan (1988)

    Google Scholar 

  20. Deriche, R.: Fast algorithms for low-level vision. IEEE Trans. PAMI 12(1), 78–87 (1990)

    Article  Google Scholar 

  21. Shen, J., Castan, S.: Edge detection by sign correspondence for zero-crossings. Actes du Premier Colloque Image’ COrn, Bordeaux, pp. 279–284 (19–21 Nov 1990)

    Google Scholar 

  22. Shen, J., Castan, S.: An optimal linear operator for step edge detection. CVGIP Graph. Models. Image Process. 54(2), 112–133 (1992)

    Article  Google Scholar 

  23. Cerciello, T., Bifulco, P., Cesarelli, M., Fratini, A.: A comparison of denoising methods for X-ray fluoroscopic images. Biomed. Signal Process. Control 7, 550–559 (2012). https://doi.org/10.1016/j.bspc.2012.06.004

    Article  Google Scholar 

  24. Sarno, A., Andreozzi, E., De Caro, D., Di Meo, G., Strollo, A.G.M., Cesarelli, M., Bifulco, P.: Real-time algorithm for Poissonian noise reduction in low-dose fluoroscopy: performance evaluation. BioMed Eng OnLine (Article in Press). https://doi.org/10.1186/s12938-019-0713-7

  25. Genovese, M., Bifulco, P., De Caro, D., Napoli, E., Petra, N., Romano, M., Cesarelli, M., Strollo, A.G.M.: Hardware implementation of a spatio-temporal average filter for real-time denoising of fluoroscopic images. J. VLSI 49, 114–124 (2015). https://doi.org/10.1016/j.vlsi.2014.10.004

    Article  Google Scholar 

  26. Castellano, G., De Caro, D., Esposito, D., Bifulco, P., Napoli, E., Petra, N., Andreozzi, E., Cesarelli, M., Strollo, A.G.M.: An FPGA-oriented algorithm for real-time filtering of poisson noise in video streams, with application to x-ray fluoroscopy. Circuits Syst. Signal Process. (2019). https://doi.org/10.1007/s00034-018-01020-x

    Article  Google Scholar 

  27. Bindilatti, A.A., Mascarenhas, N.D.A.: A non local poisson denoising algorithm based on stochastic distances. IEEE Signal Process. Lett. 20(11), 1010–1013 (2013). https://doi.org/10.1109/LSP.2013.2277111

    Article  Google Scholar 

  28. Maggioni, M., Boracchi, G., Foi, A., Egiazarian, K.: Video denoising, deblocking and enhancement through separable 4-D nonlocal spatiotemporal transforms. IEEE Trans. Image Process. 21(9), 3952–3966 (2012)

    Article  MathSciNet  Google Scholar 

  29. Makitalo, M., Foi, A.: Optimal inversion of the anscombe transformation in low-count poisson image denoising. IEEE Trans. Image Process. 20, 99–109 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Andreozzi .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andreozzi, E., Pirozzi, M.A., Sarno, A., Esposito, D., Cesarelli, M., Bifulco, P. (2020). A Comparison of Denoising Algorithms for Effective Edge Detection in X-Ray Fluoroscopy. In: Henriques, J., Neves, N., de Carvalho, P. (eds) XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019. MEDICON 2019. IFMBE Proceedings, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-030-31635-8_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31635-8_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31634-1

  • Online ISBN: 978-3-030-31635-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics