Skip to main content

Manipulation of a Whole Surgical Tool Within Safe Regions Utilizing Barrier Artificial Potentials

  • Conference paper
  • First Online:
XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019 (MEDICON 2019)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 76))

Abstract

Active constraint enforcement in robotic-assisted surgery is critical for reducing the intra-operative risk of unintentionally damaging sensitive tissues by the surgical instrument. This work considers surgical instruments which can be circumscribed by a geometric capsule and forbidden regions which can be approximated by point clouds in order to produce a repulsive wrench by the control action to guarantee manipulation within safe regions. This work details the control scheme which is based on barrier artificial potentials when considering the whole tool extending our previous results on the tool point. A proof of the control system’s passivity and non constraint violation is provided together with experimental results using a 7-dof KUKA LWR4+ manipulator as a master device in a virtual surgical scene in order to demonstrate the effectiveness of the proposed scheme.

We certify that there is no actual or potential conflict of interest in relation to this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)

    Article  Google Scholar 

  2. Kastritsi, T., Papageorgiou, D., Doulgeri, Z.: On the stability of robot kinesthetic guidance in the presence of active constraints. In: 2018 European Control Conference (ECC), pp. 622–627, June 2018

    Google Scholar 

  3. Bowyer, S.A., Davies, B.L., Rodriguez y Baena, F.: Active constraints/virtual fixtures: a survey. IEEE Trans. Robot. 30(1), 138–157 (2014)

    Article  Google Scholar 

  4. Leibrandt, K., Marcus, H.J., Kwok, K., Yang, G.: Implicit active constraints for a compliant surgical manipulator. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, pp. 276–283, May 2014

    Google Scholar 

  5. Kastritsi, T., Papageorgiou, D., Sarantopoulos, I., Stavridis, S., Doulgeri, Z., Rovithakis, G.: Guaranteed active constraints enforcement on pointcloud-approximated regions for surgical applications. In: IEEE International Conference on Robotics and Automation (ICRA), Montreal, Canada, pp. 8346–8352, 20–24 May 2019

    Google Scholar 

  6. Kastritsi, T., Papageorgiou, D., Sarantopoulos, I., Doulgeri, Z., Rovithakis, G.: Stability of active constraints enforcement in sensitive regions defined by point-clouds for robotic surgical procedures. In: European Control Conference (ECC), Naples, Italy (2019)

    Google Scholar 

  7. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  MathSciNet  Google Scholar 

  8. Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011

    Google Scholar 

  9. Khalil, H.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

Download references

Acknowledgement

This work is funded by the EU Horizon 2020 research and innovation programme under grant agreement No. 732515, project SMARTsurg. Regarding Theodora Kastritsi: «This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning»  in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (IKY)».

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoe Doulgeri .

Editor information

Editors and Affiliations

Appendix

Appendix

System’s Stability

Let us consider a 6-DOF revolute joint manipulator with gravity compensation and an additive dissipation term under the kinesthetic guidance of a human generalized force \(\mathbf F_h \in \mathbb {R}^6\).

The dynamic model of the robot in the Cartesian space can be written in the task space as follows:

$$\begin{aligned} \mathbf {\Lambda }_x \dot{\mathbf {v}}+\left( \mathbf {C}_x+\mathrm {\mathbf D}_d\right) {\mathbf {v}}- \mathbf {u}_c =\mathbf {F}_{h} , \end{aligned}$$
(11)

where

$$\begin{aligned} \mathbf {\Lambda }_x =[\mathbf {J}(\mathbf {q})\mathbf {\Lambda }^{-1}(\mathbf {q})\mathbf {J}^T(\mathbf {q})]^{-1}\text {,} \end{aligned}$$
(12)
$$\begin{aligned} \mathbf {C}_x{\mathbf {v}} =\mathbf {\Lambda }_x \left( \mathbf {J}(\mathbf {q})\mathbf {\Lambda }^{-1}(\mathbf {q}) \mathbf {C}(\mathbf {q},\dot{\mathbf {q}}) - \dot{\mathbf {J}}(\mathbf {q})\right) \dot{\mathbf {q}}, \end{aligned}$$
(13)

with \(\mathbf {q},\mathbf {\dot{q}} \in \mathbb {R}^6 \) being the robot joint position and velocity, \(\mathbf {x}=[\mathbf {p}_w^T \, \mathbf {Q}_w^T]^T\in \{\mathbb {R}^3 \times \mathbb {S}^3\}\) the pose of the wrist, where \(\mathbf p_w\) is its position and \(\mathbf Q_w\) its orientation expressed as a unit quaternion, \(\mathbf {v}=[\dot{\mathbf {p}_w}^T \, \varvec{\omega }_w^T]^T\in \mathbb {R}^\mathrm {6}\) the generalized velocity of the wrist with \(\dot{\mathbf {p}}_w , \, \varvec{\omega }_w\) the translational and angular velocities, \(\mathbf {D}_d\in \mathbb {R}^{\mathrm {6} \times \mathrm {6}}\) being a positive definite matrix of the desired damping, \(\mathbf {\Lambda }(\mathbf {q}) \in \mathbb {R}^{\mathrm {6} \times \mathrm {6}}\) being the manipulator’s inertia matrix, \(\mathbf {C}(\mathbf {q},\dot{\mathbf {q}})\in \mathbb {R}^{\mathrm {6} \times \mathrm {6}}\) being the Coriolis and centripetal matrix, \(\mathbf J(\mathbf q) \in \mathbb {R}^{\mathrm {6} \times \mathrm {6}}\) being the Jacobian of the manipulator which maps the velocity of the joints to the wrist velocity and \(\mathbf u_c \in \mathbb {R}^{6}\) the virtual constraint control input. Notice that the unit Quaternion \(\mathbf Q_w\) can be deduced given the rotation matrix \(\mathbf R_w\), \(\mathbf {\Lambda }_x\) is positive definite and \(\dot{\mathbf {\Lambda } }_x-2\mathbf {C}_x\) is skew symmetric.

To proceed with the stability analysis, we initially write system (11) in state-space. Utilizing the state vector:

$$\begin{aligned} \mathbf s=[{\mathbf v}^T \ \mathbf x^T\ \xi ]^T \in \mathbb {R}^\mathrm {6}\times (\mathbb {R}^\mathrm {3}\times \mathbb {S}^\mathrm {3})\times \mathbb {R} \end{aligned}$$
(14)

with \( \xi =\sum _{\mathbf p_i \in \mathcal {C}}{} V_{i}(\mathbf p{^*_i})\), the system (11) can be written as:

$$\begin{aligned} \dot{\mathbf {s}}=\mathbf {g}(\mathbf {s},\mathbf {F}_h ), \mathbf {s}_0=\mathbf {s}(t_0) \in D \end{aligned}$$
(15)

where

$$\begin{aligned} D\triangleq \mathbb {R}^\mathrm {6}\times \varOmega \times \mathbb {R}, \end{aligned}$$
$$\begin{aligned} \varOmega = \bigcup _{\mathbf p_i \in \mathcal {O}_s}\{\mathbf {x}\in \mathbb {R}^3\times \mathbb {S}^3 : d(\mathbf p_i,\mathbf p{^*_i})>d_c \}, \end{aligned}$$
$$\begin{aligned} \mathbf {g}(\mathbf {s},\mathbf {F}_{h} )=\begin{bmatrix} \mathbf {\Lambda }_x^{-1}(-(\mathbf {C}_x+\mathbf {D}_d) {\mathbf {v}}+\mathbf {F}_{h} +\mathbf {u}_c) \\ \dfrac{1}{2}\mathbf {J}_x{\mathbf {v}} \\ \ \sum _i\frac{\partial V_i(\mathbf {p}{^*_i})}{\partial \mathbf {p}{^*_i}}^T\dot{\mathbf {p}}{^*_i} \end{bmatrix} \end{aligned}$$

with \( \mathbf J_x=\text {diag}(2\mathbf I_3, \, \, \mathbf J_Q^T)\) where \(\mathbf J_Q\) is the mapping between the angular velocity of the frame \(\{W\}\) and the unit quaternion rates. Notice that \( \varOmega \) is the union of all wrist configurations in which the instrument does not touch the spheres \(S(\mathbf p_i,d_{c_1})\).

Theorem 1

For system (15) under the exertion of the external human force \(\mathbf {F}_h\) the forbidden area is not violated and the system is strictly output passive with respect to the wrist velocity \({\mathbf v}\).

Proof

Let the initial state be such that \(\mathbf {u_c}\ne \mathbf 0\). Utilizing the following candidate Lyapunov-like function:

$$\begin{aligned} V=\dfrac{1}{2}{\mathbf {v}}^T\mathbf {\Lambda }_x {\mathbf {v}}+k\sum _{i}{ V_{i}(\mathbf {p}{^*_i})}, \end{aligned}$$
(16)

its time derivative, substituting \(\mathbf {\Lambda }_x \dot{\mathbf {v}}\) from (11) and utilizing the skew-symmetry of matrix \(\left( \dot{\mathbf {\Lambda } }_x-2\mathbf {C}_x\right) \), yields:

$$\begin{aligned} \dot{V}=-{\mathbf {v}}^T\mathbf {D}_d{ \mathbf {v}}+\mathbf {v}^T\mathbf {F}_h+ \mathbf v^T\mathbf {u}_c -k\sum _{i}{ \dot{\mathbf {p}}{^*_i}^T \mathbf f_i}. \end{aligned}$$
(17)

The time derivative of the nearest point, using the time derivative of (1) for \(\sigma =\sigma *\), given by:

$$\begin{aligned} \dot{\mathbf p}_i^*=\dfrac{\partial \mathbf {p}_s( \sigma ,t)}{\partial t}|_{\ \sigma = {\sigma }{^*_i}}+\dfrac{\partial \mathbf {p}_s( {\sigma }{^*_i},t)}{\partial \sigma ^*_i}\dot{{\sigma }{^*_i}} = \dot{\mathbf p}_w (t)+\hat{\varvec{\omega }}_w(t) \mathbf n L {\sigma }{^*_i}+ \mathbf n L \dot{{\sigma }{^*_i}} \end{aligned}$$

with \(\hat{\varvec{\omega }}_w(t) = \dot{\mathbf R}_w(t)\mathbf R_w(t)^T\) the wrist’s angular velocity expressed in the inertia frame and operator denoting the skew symmetric matrix of a vector. Substituting \(\dot{\mathbf p}_i^*\) in (17) yields:

$$\begin{aligned} \begin{aligned} \dot{V}=&-{\mathbf {v}}^T\mathbf {D}_d{ \mathbf {v}}+\mathbf {v}^T\mathbf {F}_h+\mathbf v ^T \mathbf u_c - k\sum _{i}{( \dot{\mathbf p}_w (t)+\hat{\varvec{\omega }}_w(t) \mathbf n L {\sigma }{^*_i}+ \mathbf n L \dot{{\sigma }{^*_i}})^T\mathbf f_i} \end{aligned}. \end{aligned}$$
(18)

Utilizing (9) in (8) yields:

$$\begin{aligned} \begin{aligned} \dot{V}=&-{\mathbf {v}}^T\mathbf {D}_d{ \mathbf {v}}+\mathbf {v}^T\mathbf {F}_h+k \dot{\mathbf p}_w ^T \sum _{i}\mathbf f_i+ L k \varvec{\omega }_w^T\sum _{i}\mathbf \sigma {^*_i} \mathbf n \times \mathbf f_\mathrm {i}\\\ -&k\sum _{i}{( \dot{\mathbf p}_w (t)+\hat{\varvec{\omega }}_w(t) \mathbf n L {\sigma }{^*_i}+ \mathbf n L \dot{{\sigma }{^*_i}})^T\mathbf f_i}. \end{aligned} \end{aligned}$$
(19)

Using the distributive property of the dot product and the property \(\mathbf a (\mathbf b \times \mathbf c ) =(\mathbf a \times \mathbf b) \mathbf c \) the above equation becomes:

$$\begin{aligned} \dot{V}=-{\mathbf {v}}^T\mathbf {D}_d{ \mathbf {v}}+\mathbf {v}^T\mathbf {F}_h-k L\sum _{i}{ \dot{{\sigma }{^*_i}}\mathbf n^T \mathbf f_\mathrm {i} }. \end{aligned}$$
(20)

For the first case of (3) utilizing (1) for \(\sigma =\sigma {^*_i}\) yields that \(\mathbf n^T(\mathbf {p}{^*_i}-\mathbf p_i)=0\) and for the other two cases \( \dot{{\sigma }{^*_i}}=0\). Therefore:

$$\begin{aligned} \mathbf n^T( \mathbf {p}{^*_i}-\mathbf p_i)\dot{\sigma }{^*_i}=0. \end{aligned}$$

As \(\mathbf f_i\) is in the direction of \(\mathbf {p}{^*_i}-\mathbf {p}{_i}\) and using the above property in (20) the time derivative of V becomes:

$$\begin{aligned} \dot{V}=-{\mathbf {v}}^T\mathbf {D}_d{ \mathbf {v}} +\mathbf {F}_h^T{ \mathbf {v}}\le \mathbf {F}_h^T{ \mathbf {v}}. \end{aligned}$$
(21)

Hence, system (15) is strictly output passive (see Definition 6.3 in [9]).

Rewriting (21) by completing the squares, yields:

$$\begin{aligned} \begin{aligned} \dot{V}=&-||\sqrt{\mathbf {D}_d}{\mathbf {v}}-\dfrac{1}{2}\sqrt{\mathbf {D}_d}^{-1}\mathbf {F}_h||^2+\dfrac{1}{4}\mathbf {F}_h^T \mathbf {D}_d^{-1}\mathbf {F}_h \\\le&\dfrac{1}{4}\mathbf {F}_h^T \mathbf {D}_d^{-1}\mathbf {F}_h . \end{aligned} \end{aligned}$$
(22)

Notice that \(\mathbf {F}_h\) represents the force applied by the human to guide the robot. Thus, \(\mathbf {F}_h\) is bounded and therefore \(\mathbf {F}_h^T\mathbf {D}_d^{-1}\mathbf {F}_h \) is also a bounded function of time. Additionally the human forces have bounded energy so by integrating equation (22) we get:

$$\begin{aligned} V\le V(t_0) +\int _{t_0}^{t}\dfrac{1}{4} \mathbf {F}_h^T{\mathbf {D}_d}^{-1}\mathbf {F}_h< \infty . \end{aligned}$$
(23)

Thus, states \( \xi \) and \( {\mathbf {v}}\) are bounded under the exertion of human force or otherwise there exist compact sets \(\varOmega _{\xi }, \ \varOmega _{v}\) such that \( \xi \in \varOmega _{\xi }\subset \mathbb {R}\) and \( {\mathbf v} \in \varOmega _{v}\subset \mathbb {R}^6\). As a consequence, there exists a positive constant \(\overline{\varepsilon }_i\) such that \(V_i \le \overline{\varepsilon }_i \), which for the logarithmic function defined in (4) yields:

$$\begin{aligned} 0 \le \psi _i \le 1-\dfrac{1}{e^{2\sqrt{ \overline{\varepsilon }_i }}}<1, i=1,...,M \text {,} \end{aligned}$$

and this means that \(\Vert \mathbf {p}{^*_i} - \mathbf {p}_i\Vert >d_c\) i.e. the instrument will never touch the sensitive area.

In the case that all \(\mathbf p_i\) in \(\mathcal {O}_s\) are such as \(d(\mathbf p_i,\mathbf p{^*_i})\ge d_c +d_0\) i.e. \(\mathbf u_c=\mathbf 0\) the Lyapunov function take the form \( V=\dfrac{1}{2}{\mathbf {v}}^T\mathbf {\Lambda }_x {\mathbf {v}}\) and the time derivative \(\dot{V}=-{\mathbf {v}}^T\mathrm {\mathbf D}_d \mathbf {v}+{\mathbf {v}}^T\mathbf {F}_h\le \dfrac{1}{4}\mathbf {F}_h^T \mathbf {D}_d^{-1}\mathbf {F}_h \). Thus, the system is strictly output passive w.r.t \({\mathbf {v}}\). Notice that when \(\mathbf {F}_h=\mathbf 0\), \(\mathbf {v}\) converges exponentially to zero. Hence, using Lemma 1 of the [5], we can conclude that \(\mathbf {x}\) converges to a constant.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kastritsi, T., Sarantopoulos, I., Stavridis, S., Papageorgiou, D., Doulgeri, Z. (2020). Manipulation of a Whole Surgical Tool Within Safe Regions Utilizing Barrier Artificial Potentials. In: Henriques, J., Neves, N., de Carvalho, P. (eds) XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019. MEDICON 2019. IFMBE Proceedings, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-030-31635-8_193

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31635-8_193

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31634-1

  • Online ISBN: 978-3-030-31635-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics