Skip to main content

Structural, Mechanical, and Chemical Evaluation of Molar Incisor Hypomineralization-Affected Enamel

  • Chapter
  • First Online:
Molar Incisor Hypomineralization

Abstract

In order to not only understand the pathogenesis of MIH but also derive appropriate treatment strategies, knowledge of the structural, mechanical, and chemical properties and changes of MIH-affected enamel compared to normal enamel is required. The present chapter summarizes the findings of studies on changes in MIH versus sound enamel. A number of studies reported on structural, mechanical, and chemical properties of MIH-affected enamel; however, the results of these studies are not always consistent because of the wide range of different analytical methods used. Future studies should hence aim for the use of standardized methods, if possible in combination with each other, and linking the histological, mechanical, and chemical properties with clinical parameters (severity, symptoms). Common structural findings pertain to (1) an increased protein content and enamel porosity, (2) decreased mineral density, and (3) inferior mechanical properties of the affected enamel. While it is not fully clear how these findings can be linked into clinical practice, future strategic avenues may involve an extension of the cavity preparation into seemingly healthy enamel to allow bonding to truly unaffected enamel, the use of flexure-resistant materials to overcome the mechanical limitations of the underlying MIH-affected enamel, and the use of modified conditioning techniques, tailored for MIH-affected enamel to optimize the prognosis of restorations in MIH teeth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suckling GW. Developmental defects of enamel—historical and present-day perspectives of their pathogenesis. Adv Dent Res. 1989;3:87–94.

    Article  Google Scholar 

  2. Clarkson J. Review of terminology, classifications, and indices of developmental defects of enamel. Adv Dent Res. 1989;3:104–9.

    Article  Google Scholar 

  3. Mahoney E, Ismail FS, Kilpatrick N, Swain M. Mechanical properties across hypomineralized/hypoplastic enamel of first permanent molar teeth. Eur J Oral Sci. 2004;112:497–502.

    Article  Google Scholar 

  4. A review of the developmental defects of enamel index (DDE Index). Commission on Oral Health, Research & Epidemiology. Report of an FDI Working Group. Int Dent J. 1992;42:411–26.

    Google Scholar 

  5. Suckling G, Thurley DC. Histological, macroscopic and microhardness observations of fluoride-induced changes in the enamel organ and enamel of sheep incisor teeth. Arch Oral Biol. 1984;29:165–77.

    Article  Google Scholar 

  6. Suckling GW. History of the DDE indices. N Z Dent J. 1998;94:9–11.

    PubMed  Google Scholar 

  7. Suga S. Pathology of dental hard tissues. Shikai Tenbo. 1983;62:1215–21.

    PubMed  Google Scholar 

  8. Suga S. Enamel hypomineralization viewed from the pattern of progressive mineralization of human and monkey developing enamel. Adv Dent Res. 1989;3:188–98.

    Article  Google Scholar 

  9. Suckling G, Elliott DC, Thurley DC. The production of developmental defects of enamel in the incisor teeth of penned sheep resulting from induced parasitism. Arch Oral Biol. 1983;28:393–9.

    Article  Google Scholar 

  10. Radlanski RJ. Orale Struktur-und Entwicklungsbiologie. Berlin: Quintessenz-Verlag; 2011.

    Google Scholar 

  11. Radlanski RJ. Zahnschmelz: Kieferorthopädie; 2017;31:163–73.

    Google Scholar 

  12. Nanci A. Ten Cate’s oral histology-e-book: development, structure, and function. Elsevier Health Sciences; 2017.

    Google Scholar 

  13. Berkovitz BKB, Holland GR, Moxham BJ. Oral anatomy, embryology and histology. Edinburgh: Mosby Incorporated; 2002.

    Google Scholar 

  14. Mangum JE, Crombie FA, Kilpatrick N, Manton DJ, Hubbard MJ. Surface integrity governs the proteome of hypomineralized enamel. J Dent Res. 2010;89:1160–5.

    Article  Google Scholar 

  15. Farah RA, Swain MV, Drummond BK, Cook R, Atieh M. Mineral density of hypomineralised enamel. J Dent. 2010;38:50–8.

    Article  Google Scholar 

  16. Helmcke J. Elektronenmikroskopische Strukturuntersuchungen an gesunden und kranken Zähnen. Dtsch zahnärztl Z. 1955;10:1461–78.

    Google Scholar 

  17. Simmer JP, Hu JC. Dental enamel formation and its impact on clinical dentistry. J Dent Educ. 2001;65:896–905.

    PubMed  Google Scholar 

  18. Gustafson G, Gustafson AG. A new concept of dental enamel structure and formation. Odontol Revy. 1968;19:265–70.

    PubMed  Google Scholar 

  19. Robinson C, Briggs HD, Atkinson PJ, Weatherell JA. Matrix and mineral changes in developing enamel. J Dent Res. 1979;58:871–82.

    Article  Google Scholar 

  20. Robinson C, Kirkham J, Weatherell JA, Richards A, Josephsen K, Fejerskov O. Developmental stages in permanent porcine enamel. Acta Anat (Basel). 1987;128:1–10.

    Article  Google Scholar 

  21. Carlstrom D, Glas JE, Angmar B. Studies on the ultrastructure of dental enamel. V. The state of water in human enamel. J Ultrastruct Res. 1963;8:24–9.

    Article  Google Scholar 

  22. Schroeder H, Listgarten M. Monographs in developmental biology, fine structures of the developing epithelial attachment of human teeth. Basel: Karger; 1971.

    Google Scholar 

  23. Pindborg J. Pathology of the dental hard tissues. Philadelphia: Saunders; 1970.

    Google Scholar 

  24. Via WF, Churchill JA. Relationship of enamel hypoplasia to abnormal events of gestation and birth. J Am Dent Assoc. 1959;59:702–7.

    Article  Google Scholar 

  25. Jalevik B, Noren JG. Enamel hypomineralization of permanent first molars: a morphological study and survey of possible aetiological factors. Int J Paediatr Dent. 2000;10:278–89.

    Article  Google Scholar 

  26. Crombie FA, Manton DJ, Palamara JE, Zalizniak I, Cochrane NJ, Reynolds EC. Characterisation of developmentally hypomineralised human enamel. J Dent. 2013;41:611–8.

    Article  Google Scholar 

  27. Fagrell TG, Salmon P, Melin L, Noren JG. Onset of molar incisor hypomineralization (MIH). Swed Dent J. 2013;37:61–70.

    PubMed  Google Scholar 

  28. Taube F, Marczewski M, Noren JG. Deviations of inorganic and organic carbon content in hypomineralised enamel. J Dent. 2015;43:269–78.

    Article  Google Scholar 

  29. Gambetta-Tessini K, Marino R, Ghanim A, Adams GG, Manton DJ. Validation of quantitative light-induced fluorescence-digital in the quantification of demarcated hypomineralized lesions of enamel. J Investig Clin Dent. 2017;8(4). https://doi.org/10.1111/jicd.12259.

  30. Mahoney EK, Rohanizadeh R, Ismail FS, Kilpatrick NM, Swain MV. Mechanical properties and microstructure of hypomineralised enamel of permanent teeth. Biomaterials. 2004;25:5091–100.

    Article  Google Scholar 

  31. Jalevik B, Dietz W, Noren JG. Scanning electron micrograph analysis of hypomineralized enamel in permanent first molars. Int J Paediatr Dent. 2005;15:233–40.

    Article  Google Scholar 

  32. Xie Z, Kilpatrick NM, Swain MV, Munroe PR, Hoffman M. Transmission electron microscope characterisation of molar-incisor-hypomineralisation. J Mater Sci Mater Med. 2008;19:3187–92.

    Article  Google Scholar 

  33. Chan YL, Ngan AHW, King NM. Degraded prism sheaths in the transition region of hypomineralized teeth. J Dent. 2010;38:237–44.

    Article  Google Scholar 

  34. Fagrell TG, Dietz W, Jalevik B, Noren JG. Chemical, mechanical and morphological properties of hypomineralized enamel of permanent first molars. Acta Odontol Scand. 2010;68:215–22.

    Article  Google Scholar 

  35. Bozal CB, Kaplan A, Ortolani A, Cortese SG, Biondi AM. Ultrastructure of the surface of dental enamel with molar incisor hypomineralization (MIH) with and without acid etching. Acta Odontol Latinoam. 2015;28:192–8.

    PubMed  Google Scholar 

  36. Farah RA, Drummond BK, Swain MV, Williams S. Relationship between laser fluorescence and enamel hypomineralisation. J Dent. 2008;36:915–21.

    Article  Google Scholar 

  37. Garot E, Rouas P, D'Incau E, Lenoir N, Manton D, Couture-Veschambre C. Mineral density of hypomineralised and sound enamel. Bull Group Int Rech Sci Stomatol Odontol. 2016;53:e33.

    PubMed  Google Scholar 

  38. Fearne J, Anderson P, Davis GR. 3D X-ray microscopic study of the extent of variations in enamel density in first permanent molars with idiopathic enamel hypomineralisation. Br Dent J. 2004;196:634–8; discussion 625

    Article  Google Scholar 

  39. Farah R, Drummond B, Swain M, Williams S. Linking the clinical presentation of molar-incisor hypomineralisation to its mineral density. Int J Paediatr Dent. 2010;20:353–60.

    Article  Google Scholar 

  40. Jalevik B, Odelius H, Dietz W, Noren J. Secondary ion mass spectrometry and X-ray microanalysis of hypomineralized enamel in human permanent first molars. Arch Oral Biol. 2001;46:239–47.

    Article  Google Scholar 

  41. Farah RA, Monk BC, Swain MV, Drummond BK. Protein content of molar-incisor hypomineralisation enamel. J Dent. 2010;38:591–6.

    Article  Google Scholar 

  42. Martinovic B, Ivanovic M, Milojkovic Z, Mladenovic R. Analysis of the mineral composition of hypomineralized first permanent molars. Vojnosanit Pregl. 2015;72:864–9.

    Article  Google Scholar 

  43. Melin L, Lundgren J, Malmberg P, Noren JG, Taube F, Cornell DH. XRMA and ToF-SIMS analysis of normal and hypomineralized enamel. Microsc Microanal. 2015;21:407–21.

    Article  Google Scholar 

  44. Crombie FA, Cochrane NJ, Manton DJ, Palamara JE, Reynolds EC. Mineralisation of developmentally hypomineralised human enamel in vitro. Caries Res. 2013;47:259–63.

    Article  Google Scholar 

  45. Elhennawy K, Manton DJ, Crombie F, Zaslansky P, Radlanski RJ, Jost-Brinkmann PG, et al. Structural, mechanical and chemical evaluation of molar-incisor hypomineralization-affected enamel: A systematic review. Arch Oral Biol. 2017;83:272–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Elhennawy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elhennawy, K., Bekes, K., Dobsak, A., Tangl, S., Shokoohi-Tabrizi, H., Schwendicke, F. (2020). Structural, Mechanical, and Chemical Evaluation of Molar Incisor Hypomineralization-Affected Enamel. In: Bekes, K. (eds) Molar Incisor Hypomineralization. Springer, Cham. https://doi.org/10.1007/978-3-030-31601-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31601-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31600-6

  • Online ISBN: 978-3-030-31601-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics