Skip to main content

Melanoma

  • Chapter
  • First Online:
Oncology in the Precision Medicine Era

Abstract

Rapid growth of translational research in the biology and immunology of melanoma has set the stage for improvements in therapy ranging from surgical procedures (reduced in extent, thus improving morbidity and costs to patients and payors) through radiation techniques, adjuvant interventions, and advanced disease therapies. In this chapter, we provide an overview of the current state of melanoma therapies, the evidence-based guidance and clinical rationale for treatment decisions, and the principles underlying the need to increase our knowledge, provide definition, and judiciously incorporate value-based diagnostic, treatment, and surveillance strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barth A, Wanek LA, Morton DL. Prognostic factors in 1,521 melanoma patients with distant metastases. J Am Coll Surg. 1995;181:193–201.

    CAS  PubMed  Google Scholar 

  2. Gos A, Jurkowska M, van Akkooi A, et al. Molecular characterization and patient outcome of melanoma nodal metastases and an unknown primary site. Ann Surg Oncol. 2014;21:4317–23.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bae JM, Choi YY, Kim DS, et al. Metastatic melanomas of unknown primary show better prognosis than those of known primary: a systematic review and meta-analysis of observational studies. J Am Acad Dermatol. 2015;72:59–70.

    Article  PubMed  Google Scholar 

  4. Egberts F, Bergner I, Kruger S, et al. Metastatic melanoma of unknown primary resembles the genotype of cutaneous melanomas. Ann Oncol. 2014;25:246–50.

    Article  CAS  PubMed  Google Scholar 

  5. Armstrong BK, Kricker A. How much melanoma is caused by sun exposure? Melanoma Res. 1993;3:395–401.

    Article  CAS  PubMed  Google Scholar 

  6. Mao P, Brown AJ, Esaki S, et al. ETS transcription factors induce a unique UV damage signature that drives recurrent mutagenesis in melanoma. Nat Commun. 2018;9:2626.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Hodis E, Watson IR, Kryukov GV, et al. A landscape of driver mutations in melanoma. Cell. 2012;150:251–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371:2189–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9:34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Spranger S, Luke JJ, Bao R, et al. Density of immunogenic antigens does not explain the presence or absence of the T-cell-inflamed tumor microenvironment in melanoma. Proc Natl Acad Sci U S A. 2016;113:E7759–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cristescu R, Mogg R, Ayers M, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science. 2018;362:eaar3593.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Atkins MB. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17:2105.

    Article  CAS  PubMed  Google Scholar 

  15. Alva A, Daniels GA, Wong MK, et al. Contemporary experience with high-dose interleukin-2 therapy and impact on survival in patients with metastatic melanoma and metastatic renal cell carcinoma. Cancer Immunol Immunother. 2016;65:1533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kirkwood JM, Strawderman MH, Ernstoff MS, Smith TJ, Borden EC, Blum RH. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J Clin Oncol. 1996;14:7–17.

    Article  CAS  PubMed  Google Scholar 

  17. Kirkwood J, Ibrahim J, Sosman J, et al. High-dose interferon alfa-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: results of intergroup trial E1694/S9512/C509801. J Clin Oncol. 2001;19(9):2370–80.

    Article  CAS  PubMed  Google Scholar 

  18. Rosenberg SA. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med. 1985;161:1169.

    Article  CAS  PubMed  Google Scholar 

  19. Rosenberg SA. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med. 1985;313:1485.

    Article  CAS  PubMed  Google Scholar 

  20. Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17:4550–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu R, Forget MA, Chacon J, et al. Adoptive T-cell therapy using autologous tumor-infiltrating lymphocytes for metastatic melanoma: current status and future outlook. Cancer J. 2012;18:160–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Radvanyi LG, Bernatchez C, Zhang M, et al. Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin Cancer Res. 2012;18:6758–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Retel VP, Steuten LMG, Geukes Foppen MH, et al. Early cost-effectiveness of tumor infiltrating lymphocytes (TIL) for second line treatment in advanced melanoma: a model-based economic evaluation. BMC Cancer. 2018;18:895.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19:813–24.

    Article  CAS  PubMed  Google Scholar 

  25. Leach DR, Krummel MF, JP A. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271:1734.

    Article  CAS  PubMed  Google Scholar 

  26. Schachter J. et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival analysis of KEYNOTE-006. J Clin Oncol. 2016;34(Suppl; abstr 9504).

    Article  Google Scholar 

  27. Robert C, et al. Three-year overall survival for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001. J Clin Oncol. 2016;34:9503.

    Article  Google Scholar 

  28. Hodi FS, Chiarion-Sileni V, Gonzalez R, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018;19:1480–92.

    Article  CAS  PubMed  Google Scholar 

  29. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Bergman ML, Cilio CM, Penha-Goncalves C, et al. CTLA-4-/- mice display T cell-apoptosis resistance resembling that ascribed to autoimmune-prone non-obese diabetic (NOD) mice. J Autoimmun. 2001;16:105–13.

    Article  CAS  PubMed  Google Scholar 

  31. Liang SC, Latchman YE, Buhlmann JE, et al. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol. 2003;33:2706–16.

    Article  CAS  PubMed  Google Scholar 

  32. Xu C, Chen YP, Du XJ, et al. Comparative safety of immune checkpoint inhibitors in cancer: systematic review and network meta-analysis. BMJ. 2018;363:k4226.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Brahmer JR, Lacchetti C, Schneider BJ, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American society of clinical oncology clinical practice guideline. J Clin Oncol. 2018;36(17):1714–68.

    Article  CAS  PubMed  Google Scholar 

  34. Girotra M, Hansen A, Farooki A, et al. The current understanding of the endocrine effects from immune checkpoint inhibitors and recommendations for management. JNCI Cancer Spectr. 2018;2:pky021.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Reynolds KL, Guidon AC. Diagnosis and management of immune checkpoint inhibitor-associated neurologic toxicity: illustrative case and review of the literature. Oncologist. 2019;24(4):435–43.

    Article  PubMed  Google Scholar 

  36. Siroy AE, Boland GM, Milton DR, et al. Beyond BRAF(V600): clinical mutation panel testing by next-generation sequencing in advanced melanoma. J Invest Dermatol. 2015;135:508–15.

    Article  CAS  PubMed  Google Scholar 

  37. Cancer Genome Atlas N. Genomic classification of cutaneous melanoma. Cell. 2015;161:1681–96.

    Article  CAS  Google Scholar 

  38. Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24:4340–6.

    Article  CAS  PubMed  Google Scholar 

  39. Neiswender JV, Kortum RL, Bourque C, et al. KIT suppresses BRAF(V600E)-mutant melanoma by attenuating oncogenic RAS/MAPK signaling. Cancer Res. 2017;77:5820–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hodi FS. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Middleton MR, et al. Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol. 2000;18:158–66.

    Article  CAS  PubMed  Google Scholar 

  43. Robert C, Ribas A, Wolchok JD, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384:1109–17.

    Article  CAS  PubMed  Google Scholar 

  44. Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.

    Article  CAS  PubMed  Google Scholar 

  45. Long GV. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study. Ann Oncol. 2017;28:1631–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ascierto PA, McArthur GA, Dréno B, et al. Cobimetinib combined with vemurafenib in advanced BRAFV600-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol. 2016;17:1248–60.

    Article  CAS  PubMed  Google Scholar 

  47. Dummer R, Ascierto PA, Gogas HJ, et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2018;19:603–15.

    Article  CAS  PubMed  Google Scholar 

  48. Andtbacka RH, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33:2780–8.

    Article  CAS  PubMed  Google Scholar 

  49. Flaherty KT, Infante JR, Daud A, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367:1694–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Long GV, Eroglu Z, Infante J, et al. Long-term outcomes in patients with BRAF V600-mutant metastatic melanoma who received dabrafenib combined with trametinib. J Clin Oncol. 2018;36:667–73.

    Article  CAS  PubMed  Google Scholar 

  51. Robert C. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372:30–9.

    Article  PubMed  CAS  Google Scholar 

  52. Larkin J, Ascierto PA, Dreno B, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371:1867–76.

    Article  PubMed  CAS  Google Scholar 

  53. Long GV, Stroyakovskiy D, Gogas H, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet. 2015;386:444–51.

    Article  CAS  PubMed  Google Scholar 

  54. Daud A, Tsai K. Management of treatment-related adverse events with agents targeting the MAPK pathway in patients with metastatic melanoma. Oncologist. 2007;22:823–33.

    Article  CAS  Google Scholar 

  55. Daud A, Gill J, Kamra S, Chen L, Ahuja A. Indirect treatment comparison of dabrafenib plus trametinib versus vemurafenib plus cobimetinib in previously untreated metastatic melanoma patients. J Hematol Oncol. 2017;10:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Curti B, Daniels GA, McDermott DF, et al. Improved survival and tumor control with Interleukin-2 is associated with the development of immune-related adverse events: data from the PROCLAIM(SM) registry. J Immunother Cancer. 2017;5:102.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hamid O, Robert C, Daud A, et al. 5-year survival outcomes in patients (pts) with advanced melanoma treated with pembrolizumab (pembro) in KEYNOTE-001. J Clin Oncol. 2018;36:9516.

    Article  Google Scholar 

  58. Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377:1345–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tarhini A, McDermott D, Ambavane A, et al. Clinical and economic outcomes associated with treatment sequences in patients with BRAF-mutant advanced melanoma. Immunotherapy. 2019;11(4):283–95.

    Article  CAS  PubMed  Google Scholar 

  60. Bilir SP, Ma Q, Zhao Z, Wehler E, Munakata J, Barber B. Economic burden of toxicities associated with treating metastatic melanoma in the United States. Am Health Drug Benefits. 2016;9:203–13.

    PubMed  PubMed Central  Google Scholar 

  61. Hodi FS, Chiarion-Sileni V, Gonzalez R, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet. 2018;19:1480.

    Article  CAS  Google Scholar 

  62. Lawson DH, Lee S, Zhao F, et al. Randomized, placebo-controlled, phase III trial of yeast-derived Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) versus peptide vaccination versus GM-CSF plus peptide vaccination versus placebo in patients with no evidence of disease after complete surgical resection of locally advanced and/or stage IV melanoma: a trial of the Eastern Cooperative Oncology Group-American College of radiology imaging network cancer research group (E4697). J Clin Oncol. 2015;33:4066–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chesney J, Puzanov I, Collichio F, et al. Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J Clin Oncol. 2018;36:1658–67.

    Article  CAS  PubMed  Google Scholar 

  64. Ribas A, Dummer R, Puzanov I, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell. 2017;170:1109–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang Y, Le TK, Shaw JW, Kotapati S. Retrospective analysis of drug utilization, health care resource use, and costs associated with IFN therapy for adjuvant treatment of malignant melanoma. Clinicoecon Outcomes Res. 2015;7:397–407.

    PubMed  PubMed Central  Google Scholar 

  66. Eggermont AM, Chiarion-Sileni V, Grob JJ, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2015;16:522–30.

    Article  CAS  PubMed  Google Scholar 

  67. Eggermont AM, Chiarion-Sileni V, Grob JJ, et al. Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N Engl J Med. 2016;375:1845–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tarhini A, Lee SJ, Hodi FS, et al. A phase III randomized study of adjuvant ipilimumab (3 or 10 mg/kg) versus high-dose interferon alfa-2b for resected high-risk melanoma (U.S. Intergroup E1609): Preliminary safety and efficacy of the ipilimumab arms. J Clin Oncol. 2017;35:9500.

    Article  Google Scholar 

  69. Weber J, Mandala M, Del Vecchio M, et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. 2017;377:1824–35.

    Article  CAS  PubMed  Google Scholar 

  70. Eggermont AMM, Blank CU, Mandala M, et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med. 2018;378:1789–801.

    Article  CAS  PubMed  Google Scholar 

  71. Hauschild A, Dummer R, Schadendorf D, et al. Longer follow-up confirms relapse-free survival benefit with adjuvant dabrafenib plus trametinib in patients with resected BRAF V600-mutant stage III melanoma. J Clin Oncol. 2018;36(35):3441–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Robert C, Ribas A, Hamid O, et al. Durable complete response after discontinuation of pembrolizumab in patients with metastatic melanoma. J Clin Oncol. 2018;36:1668–74.

    Article  CAS  PubMed  Google Scholar 

  73. Lipson EJ, Sharfman WH, Drake CG, et al. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin Cancer Res. 2013;19:462–8.

    Article  CAS  PubMed  Google Scholar 

  74. Christiansen SA, Swoboda D, Gardner K, Rapisuwon S, Atkins MB, Gibney GT. Off treatment survival (OTS) in patients (pts) with advanced melanoma after anti-PD1 therapy. J Clin Oncol. 2018;36(15):9554.

    Article  Google Scholar 

  75. NCCN. Management of Cutaneous Melanoma. NCCN. 2019.

    Google Scholar 

  76. Goldberg SB, Gettinger SN, Mahajan A, et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2016;17:976–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Long GV, Atkinson V, Lo S, et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: a multicentre randomised phase 2 study. Lancet Oncol. 2018;19:672–81.

    Article  CAS  PubMed  Google Scholar 

  78. Margolin K, Ernstoff MS, Hamid O, et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol. 2012;13:459–65.

    Article  CAS  PubMed  Google Scholar 

  79. Tawbi HA, Forsyth PA, Algazi A, et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N Engl J Med. 2018;379:722–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Champiat S, Lambotte O, Barreau E, et al. Management of immune checkpoint blockade dysimmune toxicities: a collaborative position paper. Ann Oncol. 2016;27:559–74.

    Article  CAS  PubMed  Google Scholar 

  81. Puzanov I, Diab A, Abdallah K, et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J Immunother Cancer. 2017;5:95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. NCCN. Management of immunotherapy-related toxicities. NCCN. 2018.

    Google Scholar 

  83. Rozeman EA, Menzies AM, van de Wiel BA, et al. OpACIN-neo: a multicenter phase II study to identify the optimal neo-adjuvant combination scheme of ipilimumab (IPI) and nivolumab (NIVO). Oncology Pro.ESMO.org.LBA42, 2018.

  84. Amaria RN, Reddy SM, Tawbi HA, et al. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat Med. 2018;24:1649–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Copley-Merriman C, Stevinson K, Liu FX, et al. Direct costs associated with adverse events of systemic therapies for advanced melanoma: systematic literature review. Medicine (Baltimore). 2018;97:e11736.

    Article  Google Scholar 

  86. Fu AZ, Li Z, Tang J, Mahmood S, Whisman T, Qiu Y. Costs associated with adverse events for systemic therapies in metastatic melanoma. J Comp Eff Res. 2018;7:867–79.

    Article  PubMed  Google Scholar 

  87. Ratain MJ, Goldstein DA. Time is money: optimizing the scheduling of nivolumab. J Clin Oncol. 2018;Jco1800045.

    Google Scholar 

  88. Goldstein DA, Gordon N, Davidescu M, et al. A phamacoeconomic analysis of personalized dosing vs fixed dosing of Pembrolizumab in Firstline PD-L1-positive non-small cell lung cancer. J Natl Cancer Inst. 2017;109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn Bollin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bollin, K., Margolin, K. (2020). Melanoma. In: Salgia, R. (eds) Oncology in the Precision Medicine Era. Springer, Cham. https://doi.org/10.1007/978-3-030-31471-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31471-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31470-5

  • Online ISBN: 978-3-030-31471-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics