Skip to main content

Knowledge Representation and Rule Mining in Entity-Centric Knowledge Bases

  • Chapter
  • First Online:
Reasoning Web. Explainable Artificial Intelligence

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11810))

Abstract

Entity-centric knowledge bases are large collections of facts about entities of public interest, such as countries, politicians, or movies. They find applications in search engines, chatbots, and semantic data mining systems. In this paper, we first discuss the knowledge representation that has emerged as a pragmatic consensus in the research community of entity-centric knowledge bases. Then, we describe how these knowledge bases can be mined for logical rules. Finally, we discuss how entities can be represented alternatively as vectors in a vector space, by help of neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/.

  2. 2.

    https://wolframalpha.com.

  3. 3.

    We can even say type(class, class), i.e., class is an instance of class.

  4. 4.

    Let \(|\mathcal {K}|\) be the number of facts and \(|r(\mathcal {K})|\) the number of relations in a KB \(\mathcal {K}\). Let d be the maximal length of a rule. The size of the search space is reduced from \(O(|\mathcal {K}|^d)\) to \(O(|r(\mathcal {K})|^d)\) when we remove the addInstantiatedAtom operator.

  5. 5.

    Instead of: if a rule is not frequent, none of its refinements can be frequent.

References

  1. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994)

    Google Scholar 

  2. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph. SIAM J. Comput. 1(2), 131–137 (1972)

    Article  MathSciNet  Google Scholar 

  3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  4. Bienvenu, M., Deutch, D., Suchanek, F.M.: Provenance for web 2.0 data. In: Jonker, W., Petković, M. (eds.) SDM 2012. LNCS, vol. 7482, pp. 148–155. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32873-2_10

    Chapter  Google Scholar 

  5. Bizer, C., Heath, T., Idehen, K., Berners-Lee, T.: Linked data on the web. In: WWW (2008)

    Google Scholar 

  6. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: SIGMOD (2008)

    Google Scholar 

  7. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy function for learning with multi-relational data. Mach. Learn. 94(2), 233–259 (2014)

    Article  MathSciNet  Google Scholar 

  8. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 26, pp. 2787–2795. Curran Associates Inc. (2013)

    Google Scholar 

  9. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E., Mitchell, T.: Toward an architecture for never-ending language learning. In: AAAI (2010)

    Google Scholar 

  10. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and trust. In: WWW (2005)

    Google Scholar 

  11. Chen, Y., Wang, D.Z., Goldberg, S.: Scalekb: scalable learning and inference over large knowledge bases. In: VLDBJ (2016)

    Google Scholar 

  12. De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 1–27. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78652-8_1

    Chapter  MATH  Google Scholar 

  13. Dehaspe, L., De Raedt, L.: Mining association rules in multiple relations. In: Lavrač, N., Džeroski, S. (eds.) ILP 1997. LNCS, vol. 1297, pp. 125–132. Springer, Heidelberg (1997). https://doi.org/10.1007/3540635149_40

    Chapter  Google Scholar 

  14. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI 2018), New Orleans, LA, USA, vol. 32, February 2018. arXiv: 1707.01476

  15. Dong, X.L., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, New York, NY, USA, 24–27 August 2014, pp. 601–610 (2014)

    Google Scholar 

  16. Duc Tran, M., d’Amato, C., Nguyen, B.T., Tettamanzi, A.G.B.: Comparing rule evaluation metrics for the evolutionary discovery of multi-relational association rules in the semantic web. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 289–305. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77553-1_18

    Chapter  Google Scholar 

  17. Etzioni, O., et al.: Web-scale information extraction in knowitall. In: WWW (2004)

    Google Scholar 

  18. Fanizzi, N., d’Amato, C., Esposito, F., Minervini, P.: Numeric prediction on owl knowledge bases through terminological regression trees. Int. J. Semant. Comput. 6(04), 429–446 (2012)

    Article  Google Scholar 

  19. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  20. Ferrucci, D., et al.: Building Watson: an overview of the DeepQA project. AI Mag. 31(3), 59–79 (2010)

    Article  Google Scholar 

  21. Fisher, M.D., Gabbay, D.M., Vila, L.: Handbook of Temporal Reasoning in Artificial Intelligence. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  22. Gad-Elrab, M.H., Stepanova, D., Urbani, J., Weikum, G.: Exception-enriched rule learning from knowledge graphs. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 234–251. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_15

    Chapter  Google Scholar 

  23. Galárraga, L., Razniewski, S., Amarilli, A., Suchanek, F.M.: Predicting completeness in knowledge bases. In: WSDM (2017)

    Google Scholar 

  24. Galárraga, L., Suchanek, F.M.: Towards a numerical rule mining language. In: AKBC Workshop (2014)

    Google Scholar 

  25. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: AMIE: association rule mining under incomplete evidence in ontological knowledge bases. In: WWW (2013)

    Google Scholar 

  26. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE+. In: VLDBJ (2015)

    Google Scholar 

  27. Getoor, L., Diehl, C.P.: Link mining: a survey. ACM SIGKDD Explor. Newsl. 7(2), 3–12 (2005)

    Article  Google Scholar 

  28. Gutierrez, C., Hurtado, C.A., Vaisman, A.: Introducing time into RDF. IEEE Trans. Knowl. Data Eng. 19(2), 207–218 (2007)

    Article  Google Scholar 

  29. Hawthorne, J.: Inductive logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, spring 2018 edition (2018)

    Google Scholar 

  30. Hellmann, S., Lehmann, J., Auer, S.: Learning of owl class descriptions on very large knowledge bases. Int. J. Semant. Web Inf. Syst. (IJSWIS) 5(2), 25–48 (2009)

    Article  Google Scholar 

  31. Henderson, L.: The problem of induction. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, spring 2019 edition (2019)

    Google Scholar 

  32. Ho, V.T., Stepanova, D., Gad-Elrab, M.H., Kharlamov, E., Weikum, G.: Rule learning from knowledge graphs guided by embedding models. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 72–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_5

    Chapter  Google Scholar 

  33. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: Yago2: a spatially and temporally enhanced knowledge base from wikipedia. Artif. Intell. 194, 28–61 (2013)

    Article  MathSciNet  Google Scholar 

  34. Inoue, K.: Induction as consequence finding. Mach. Learn. 55(2), 109–135 (2004)

    Article  Google Scholar 

  35. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Vol. 1: Long Papers), pp. 687–696, Beijing, China. Association for Computational Linguistics, July 2015

    Google Scholar 

  36. Kimber, T., Broda, K., Russo, A.: Induction on failure: learning connected horn theories. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS (LNAI), vol. 5753, pp. 169–181. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04238-6_16

    Chapter  Google Scholar 

  37. Krötzsch, M., Marx, M., Ozaki, A., Thost, V.: Attributed description logics: reasoning on knowledge graphs. In: IJCAI (2018)

    Google Scholar 

  38. Lajus, J., Suchanek, F.M.: Are all people married? Determining obligatory attributes in knowledge bases. In: WWW (2018)

    Google Scholar 

  39. Lao, N., Mitchell, T., Cohen, W.W.: Random walk inference and learning in a large scale knowledge base. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 529–539. Association for Computational Linguistics (2011)

    Google Scholar 

  40. Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Semant. Web J. 6(2), 167–195 (2015)

    Google Scholar 

  41. Lenat, D.B., Guha, R.V.: Building Large Knowledge-Based Systems; Representation and inference in the Cyc Project. Addison-Wesley Longman Publishing Co. Inc., Boston (1989)

    Google Scholar 

  42. Lerer, A., et al.: PyTorch-BigGraph: a large-scale graph embedding system. In: Proceedings of The Conference on Systems and Machine Learning, March 2019. arXiv: 1903.12287

  43. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Twenty-Ninth AAAI Conference on Artificial Intelligence, February 2015

    Google Scholar 

  44. Liu, H., Singh, P.: Conceptnet. BT Tech. J. 22(4), 211–226 (2004)

    Article  Google Scholar 

  45. Liu, H., Wu, Y., Yang, Y.: Analogical inference for multi-relational embeddings. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, International Convention Centre, Sydney, Australia, 06–11 Aug 2017, vol. 70, pp. 2168–2178. PMLR (2017)

    Google Scholar 

  46. Margolis, E., Laurence, S.: Concepts. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Stanford (2014)

    Google Scholar 

  47. Marx, M., Krötzsch, M., Thost, V.: Logic on mars: ontologies for generalised property graphs. In: IJCAI (2017)

    Google Scholar 

  48. Melo, A., Theobald, M., Völker, J.: Correlation-based refinement of rules with numerical attributes. In: FLAIRS (2014)

    Google Scholar 

  49. Muggleton, S.: Inverse entailment and progol. New Gener. Comput. 13(3–4), 245–286 (1995)

    Article  Google Scholar 

  50. Muggleton, S., De Raedt, L.: Inductive logic programming: theory and methods. J. Log. Program. 19, 629–679 (1994)

    Article  MathSciNet  Google Scholar 

  51. Muggleton, S., Feng, C.: Efficient induction of logic programs. Citeseer (1990)

    Google Scholar 

  52. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model for knowledge base completion based on convolutional neural network. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 2 (Short Papers), pp. 327–333 (2018). arXiv: 1712.02121

  53. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 1955–1961, February 2016

    Google Scholar 

  54. Nickel, M., Tresp, V., Kriegel, H.-P.: A three-way model for collective learning on multi-relational data. In: Proceedings of the 28th International Conference on International Conference on Machine Learning, ICML 2011, pp. 809–816. Omnipress, Bellevue 92011)

    Google Scholar 

  55. Ortona, S., Meduri, V.V., Papotti, P.: Robust discovery of positive and negative rules in knowledge bases. In: ICDE (2018)

    Google Scholar 

  56. Pellissier Tanon, T., Stepanova, D., Razniewski, S., Mirza, P., Weikum, G.: Completeness-aware rule learning from knowledge graphs. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 507–525. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_30

    Chapter  Google Scholar 

  57. Plotkin, G.: Automatic methods of inductive inference (1972)

    Google Scholar 

  58. Ponzetto, S., Navigli, R.: BabelNet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif. Intell. 193, 217–250 (2012)

    Article  MathSciNet  Google Scholar 

  59. Ray, O., Broda, K., Russo, A.: Hybrid abductive inductive learning: a generalisation of progol. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 311–328. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39917-9_21

    Chapter  MATH  Google Scholar 

  60. Razniewski, S., Suchanek, F.M., Nutt, W.: But what do we actually know? In: AKBC Workshop (2016)

    Google Scholar 

  61. Russell, B.: The Problems of Philosophy. Barnes & Noble, New York City (1912)

    MATH  Google Scholar 

  62. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  63. Shapiro, E.Y.: Inductive inference of theories from facts. Yale University, Department of Computer Science (1981)

    Google Scholar 

  64. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor networks for knowledge base completion. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 26, pp. 926–934. Curran Associates Inc. (2013)

    Google Scholar 

  65. Soulet, A., Giacometti, A., Markhoff, B., Suchanek, F.M.: Representativeness of knowledge bases with the generalized Benford’s law. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 374–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_22

    Chapter  Google Scholar 

  66. Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks/Cole, Boston (2000)

    Google Scholar 

  67. Staab, S., Studer, R. (eds.): Handbook on Ontologies. International Handbooks on Information Systems. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-92673-3

    Book  Google Scholar 

  68. Stepanova, D., Gad-Elrab, M.H., Ho, V.T.: Rule induction and reasoning over knowledge graphs. In: d’Amato, C., Theobald, M. (eds.) Reasoning Web 2018. LNCS, vol. 11078, pp. 142–172. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00338-8_6

    Chapter  Google Scholar 

  69. Suchanek, F.M., Abiteboul, S., Senellart, P.: Paris: probabilistic alignment of relations, instances, and schema. In: VLDB (2012)

    Google Scholar 

  70. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago - a core of semantic knowledge. In: WWW (2007)

    Google Scholar 

  71. Suchanek, F.M., Preda, N.: Semantic culturomics. In: VLDB Short Paper Track (2014)

    Google Scholar 

  72. Tandon, N., de Melo, G., De, A., Weikum, G.: Knowlywood: mining activity knowledge from hollywood narratives. In: CIKM (2015)

    Google Scholar 

  73. Tandon, N., de Melo, G., Suchanek, F.M., Weikum, G.: WebChild: harvesting and organizing commonsense knowledge from the web. In: WSDM (2014)

    Google Scholar 

  74. Telgarsky, M.: Representation benefits of deep feedforward networks. arXiv [cs], September 2015. arXiv: 1509.08101

  75. Trouillon, T., Nickel, M.: Complex and holographic embeddings of knowledge graphs: a comparison. arXiv [cs, stat], July 2017. arXiv: 1707.01475

  76. Udrea, O., Recupero, D.R., Subrahmanian, V.S.: Annotated rdf. ACM Trans. Comput. Logic 11(2), 10 (2010)

    Article  MathSciNet  Google Scholar 

  77. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)

    Article  Google Scholar 

  78. Wang, P., Li, S., Pan, R.: Incorporating GAN for negative sampling in knowledge representation learning. In: Thirty-Second AAAI Conference on Artificial Intelligence, April 2018

    Google Scholar 

  79. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, June 2014

    Google Scholar 

  80. Welty, C., Fikes, R., Makarios, S.: A reusable ontology for fluents in owl. In: FOIS (2006)

    Google Scholar 

  81. Whitehead, A.N., Russell, B.: Principia mathematica (1913)

    Google Scholar 

  82. Word Wide Web Consortium. RDF Primer (2004)

    Google Scholar 

  83. Word Wide Web Consortium. RDF Vocabulary Description Language 1.0: RDF Schema (2004)

    Google Scholar 

  84. Word Wide Web Consortium. SKOS Simple Knowledge Organization System (2009)

    Google Scholar 

  85. Word Wide Web Consortium. OWL 2 Web Ontology Language (2012)

    Google Scholar 

  86. Word Wide Web Consortium. SPARQL 1.1 Query Language (2013)

    Google Scholar 

  87. Yahya, M., Barbosa, D., Berberich, K., Wang, Q., Weikum, G.: Relationship queries on extended knowledge graphs. In: WSDM (2016)

    Google Scholar 

  88. Yamamoto, A.: Hypothesis finding based on upward refinement of residue hypotheses. Theoret. Comput. Sci. 298(1), 5–19 (2003)

    Article  MathSciNet  Google Scholar 

  89. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Proceedings of the International Conference on Learning Representation (ICLR), December 2014. arXiv: 1412.6575

  90. Zupanc, K., Davis, J.: Estimating rule quality for knowledge base completion with the relationship between coverage assumption. In: Proceedings of the 2018 World Wide Web Conference, pp. 1073–1081. International World Wide Web Conferences Steering Committee (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian M. Suchanek .

Editor information

Editors and Affiliations

A Computation of Support and Confidence

A Computation of Support and Confidence

Notation. Given a logical formula \(\phi \) with some free variables \(x_1, \dots , x_n\), all other variables being by default existentially quantified, we define:

$$ \#(x_1, \dots , x_n): \phi \quad :=\quad |\{ (x_1, \dots , x_n)\ :\ \phi (x_1, \dots , x_n) \text { is true }\}|$$

We remind the reader of the two following definitions:

Definition

14 (Prediction of a rule): The predictions P of a rule \(\varvec{B} \Rightarrow h\) in a KB \(\mathcal {K}\) are the head atoms of all instantiations of the rule where the body atoms appear in \(\mathcal {K}\). We write \(\mathcal {K}\wedge (\varvec{B} \Rightarrow h) \models P\).

Definition

19 (Support): The support of a rule in a KB is the number of positive examples predicted by the rule.

A prediction of a rule is a positive example if and only if it is in the KB. This observation gives rise to the following property:

Proposition 34

(Support in practice): The support of a rule \(\varvec{B}\Rightarrow h\) is the number of instantiations of the head variables that satisfy the query \(\varvec{B} \wedge h\). This value can be written as:

$$\text {support}(\varvec{B} \Rightarrow h(x, y)) = \#(x,y): \varvec{B} \wedge h(x,y)$$

Definition

20 (Confidence): The confidence of a rule is the number of positive examples predicted by the rule (the support of the rule), divided by the number of examples predicted by the rule.

Under the CWA, all the predicted examples are either positive examples or negative examples. Thus, the standard confidence of a rule is the support of the rule divided by the number of prediction of the rule, written:

$$ \textit{std-conf}(\varvec{B} \Rightarrow h(x, y)) = \frac{\#(x,y): \varvec{B} \wedge h(x,y)}{\#(x,y): \varvec{B}}$$

Assume h is more functional than inverse functional. Under the PCA, a predicted negative example is a prediction h(xy) that is not in the KB, such that, for this x there exists another entity \(y'\) such that \(h(x,y')\) is in the KB. When we add the predicted positive examples, the denominator of the PCA confidence becomes:

$$\#(x,y): (\varvec{B} \wedge h(x,y)) \vee (\varvec{B} \wedge \lnot h(x,y) \wedge \exists y'. h(x,y'))$$

We can simplify this logical formula to deduce the following formula for computing the PCA confidence:

$$\textit{pca-conf}(\varvec{B} \Rightarrow h(x,y)) = \frac{\#(x,y): \varvec{B} \wedge h(x,y)}{\#(x,y): \varvec{B} \wedge \exists y'. h(x,y')}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suchanek, F.M., Lajus, J., Boschin, A., Weikum, G. (2019). Knowledge Representation and Rule Mining in Entity-Centric Knowledge Bases. In: Krötzsch, M., Stepanova, D. (eds) Reasoning Web. Explainable Artificial Intelligence. Lecture Notes in Computer Science(), vol 11810. Springer, Cham. https://doi.org/10.1007/978-3-030-31423-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31423-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31422-4

  • Online ISBN: 978-3-030-31423-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics