Skip to main content

Pattern Strabismus: Where Does the Role of the Brain End and the Role of Muscles Begin?

  • Chapter
  • First Online:
Advances in Translational Neuroscience of Eye Movement Disorders

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 561 Accesses

Abstract

Pattern strabismus is a vertically incomitant horizontal strabismus comprising 50% of its infantile forms. High-resolution orbit imaging and contemporary physiology literature suggested the role of oblique muscle dysfunction as its pathophysiology. The role of the central nervous system was also outlined. Here, we will discuss contemporary theories with specific focus on pathophysiological concepts including oblique muscle dysfunction, loss of fusion with altered recti muscle pull, displacements and instability in connective tissue pulleys of the recti muscles, vestibular hypofunction, and abnormal neural connections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Biglan, A. W. (1990). Ophthalmologic complications of meningomyelocele: A longitudinal study. Transactions of the American Ophthalmological Society, 88, 389–462.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, H. W. (1953). Symposium; strabismus; vertical deviations. Transactions-American Academy of Ophthalmology and Otolaryngology. American Academy of Ophthalmology and Otolaryngology, 57(2), 157–162.

    CAS  PubMed  Google Scholar 

  • Clark, R. A., Miller, J. M., Rosenbaum, A. L., & Demer, J. L. (1998). Heterotopic muscle pulleys or oblique muscle dysfunction? Journal of American Association for Pediatric Ophthalmology and Strabismus, 2(1), 17–25.

    Article  CAS  Google Scholar 

  • Clark, R. A., Miller, J. M., & Demer, J. L. (2000). Three-dimensional location of human rectus pulleys by path inflections in secondary gaze positions. Investigative Ophthalmology & Visual Science, 41(12), 3787–3797.

    CAS  Google Scholar 

  • Costenbader, F. D. (1964). Symposium: The A and V patterns in strabismus. The physiopathology of the A and V patterns. Transactions-American Academy of Ophthalmology and Otolaryngology. American Academy of Ophthalmology and Otolaryngology, 68, 354–355.

    CAS  PubMed  Google Scholar 

  • Cynader, M., & Hoffmann, K. P. (1981). Strabismus disrupts binocular convergence in cat nucleus of the optic tract. Brain Research, 227(1), 132–136.

    Article  CAS  Google Scholar 

  • Das, V. E., & Mustari, M. J. (2007). Correlation of cross-axis eye movements and motoneuron activity in non-human primates with “A” pattern strabismus. Investigative Ophthalmology & Visual Science, 48(2), 665–674. https://doi.org/10.1167/iovs.06-0249. [published Online First: Epub Date].

    Article  Google Scholar 

  • Das, V. E., Fu, L. N., Mustari, M. J., & Tusa, R. J. (2005). Incomitance in monkeys with strabismus. Strabismus, 13(1), 33–41. https://doi.org/10.1080/09273970590910298. [published Online First: Epub Date].

    Article  PubMed  PubMed Central  Google Scholar 

  • Demer, J. L. (2004). Pivotal role of orbital connective tissues in binocular alignment and strabismus: The Friedenwald lecture. Investigative Ophthalmology & Visual Science, 45(3), 729–738. 28.

    Article  Google Scholar 

  • Demer, J. L. (2006). Regarding van den Bedem, Schutte, van der Helm, and Simonsz: Mechanical properties and functional importance of pulley bands or ‘Faisseaux Tendineux’. Vision Research, 46(18), 3036–3038; author reply 39–40. https://doi.org/10.1016/j.visres.2005.10.010. [published Online First: Epub Date].

    Article  Google Scholar 

  • Demer, J. L., Miller, J. M., Poukens, V., Vinters, H. V., & Glasgow, B. J. (1995). Evidence for fibromuscular pulleys of the recti extraocular muscles. Investigative Ophthalmology & Visual Science, 36(6), 1125–1136.

    CAS  Google Scholar 

  • Demer, J. L., Miller, J. M., & Poukens, V. (1996). Surgical implications of the rectus extraocular muscle pulleys. Journal of Pediatric Ophthalmology and Strabismus, 33(4), 208–218.

    Article  CAS  Google Scholar 

  • Demer, J. L., Poukens, V., Miller, J. M., & Micevych, P. (1997). Innervation of extraocular pulley smooth muscle in monkeys and humans. Investigative Ophthalmology & Visual Science, 38(9), 1774–1785.

    CAS  Google Scholar 

  • Demer, J. L., Oh, S. Y., & Poukens, V. (2000). Evidence for active control of rectus extraocular muscle pulleys. Investigative Ophthalmology & Visual Science, 41(6), 1280–1290.

    CAS  Google Scholar 

  • Detorakis, E. T., Engstrom, R. E., Straatsma, B. R., & Demer, J. L. (2003). Functional anatomy of the anophthalmic socket: Insights from magnetic resonance imaging. Investigative Ophthalmology & Visual Science, 44(10), 4307–4313.

    Article  Google Scholar 

  • Dickmann, A., Parrilla, R., Aliberti, S., et al. (2012). Prevalence of neurological involvement and malformative/systemic syndromes in A- and V-pattern strabismus. Ophthalmic Epidemiology, 19(5), 302–305. https://doi.org/10.3109/09286586.2012.694553. [published Online First: Epub Date].

    Article  PubMed  Google Scholar 

  • Distler, C., & Hoffmann, K. P. (1996). Retinal slip neurons in the nucleus of the optic tract and dorsal terminal nucleus in cats with congenital strabismus. Journal of Neurophysiology, 75(4), 1483–1494.

    Article  CAS  Google Scholar 

  • Donahue, S. P., & Itharat, P. (2010). A-pattern strabismus with overdepression in adduction: A special type of bilateral skew deviation? Journal of American Association for Pediatric Ophthalmology and Strabismus, 14(1), 42–46. https://doi.org/10.1016/j.jaapos.2009.11.009. [published Online First: Epub Date].

    Article  PubMed  Google Scholar 

  • Eustis, H. S., & Nussdorf, J. D. (1996). Inferior oblique overaction in infantile esotropia: Fundus extorsion as a predictive sign. Journal of Pediatric Ophthalmology and Strabismus, 33(2), 85–88.

    Article  CAS  Google Scholar 

  • Fink, W. H. (1955). The role of developmental anomalies in vertical muscle defects. American Journal of Ophthalmology, 40(4), 529–553.

    Article  CAS  Google Scholar 

  • France, T. D. (1975). Strabismus in hydrocephalus. The American Orthoptic Journal, 25, 101–105.

    Article  CAS  Google Scholar 

  • Ghasia, F. F., & Angelaki, D. E. (2005). Do motoneurons encode the noncommutativity of ocular rotations? Neuron, 47(2), 281–293. https://doi.org/10.1016/j.neuron.2005.05.031. [published Online First: Epub Date].

    Article  CAS  PubMed  Google Scholar 

  • Ghasia, F. F., Shaikh, A. G., Jacobs, J., & Walker, M. F. (2015). Cross-coupled eye movement supports neural origin of pattern strabismus. Investigative Ophthalmology & Visual Science, 56(5), 2855–2866.

    Article  Google Scholar 

  • Harley, R. D., & Manley, D. R. (1969). Bilateral superior oblique tenectomy in A-pattern exotropia. Transactions of the American Ophthalmological Society, 67, 324–338.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasany, A., Wong, A., Foeller, P., Bradley, D., & Tychsen, L. (2008). Duration of binocular decorrelation in infancy predicts the severity of nasotemporal pursuit asymmetries in strabismic macaque monkeys. Neuroscience, 156(2), 403–411. https://doi.org/10.1016/j.neuroscience.2008.06.070. [published Online First: Epub Date].

    Article  CAS  PubMed  Google Scholar 

  • Hertle, R. W. (2002). A next step in naming and classification of eye movement disorders and strabismus. Journal of American Association for Pediatric Ophthalmology and Strabismus (JAAPOS), 6(4), 201–202. https://doi.org/10.1067/mpa.2002.126491. [published Online First: Epub Date].

    Article  Google Scholar 

  • Hoffmann, K. P., & Stone, J. (1985). Retinal input to the nucleus of the optic tract of the cat assessed by antidromic activation of ganglion cells. Experimental Brain Research, 59(2), 395–403.

    Article  CAS  Google Scholar 

  • Hoffmann, K. P., Distler, C., & Ilg, U. (1992). Callosal and superior temporal sulcus contributions to receptive field properties in the macaque monkey’s nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract. The Journal of Comparative Neurology, 321(1), 150–162. https://doi.org/10.1002/cne.903210113. [published Online First: Epub Date].

    Article  CAS  PubMed  Google Scholar 

  • Joshi, A. C., & Das, V. E. (2011). Responses of medial rectus motoneurons in monkeys with strabismus. Investigative Ophthalmology & Visual Science, 52(9), 6697–6705. https://doi.org/10.1167/iovs.11-7402. [published Online First: Epub Date].

    Article  Google Scholar 

  • Klier, E. M., Meng, H., & Angelaki, D. E. (2006). Three-dimensional kinematics at the level of the oculomotor plant. The Journal of Neuroscience, 26(10), 2732–2737. https://doi.org/10.1523/JNEUROSCI.3610-05.2006. [published Online First: Epub Date].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knapp, P. (1959). Vertically incomitant horizontal strabismus: The so-called “A” and “V” syndromes. Transactions of the American Ophthalmological Society, 57, 666–699.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kono, R., Clark, R. A., & Demer, J. L. (2002). Active pulleys: Magnetic resonance imaging of rectus muscle paths in tertiary gazes. Investigative Ophthalmology & Visual Science, 43(7), 2179–2188.

    Google Scholar 

  • Kushner, B. J. (2013). Torsion and pattern strabismus: Potential conflicts in treatment. JAMA Ophthalmology, 131(2), 190–193. https://doi.org/10.1001/2013.jamaophthalmol.199. [published Online First: Epub Date].

    Article  PubMed  Google Scholar 

  • Lee, S. Y., & Rosenbaum, A. L. (2003). Surgical results of patients with A-pattern horizontal strabismus. Journal of American Association for Pediatric Ophthalmology and Strabismus, 7(4), 251–255. https://doi.org/10.1016/mpa.2003.S1091853103001150. [published Online First: Epub Date].

    Article  PubMed  Google Scholar 

  • Maunsell, J. H., & Van Essen, D. C. (1983). Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. Journal of Neurophysiology, 49(5), 1127–1147.

    Article  CAS  Google Scholar 

  • Miller, J. M. (1989). Functional anatomy of normal human rectus muscles. Vision Research, 29(2), 223–240.

    Article  CAS  Google Scholar 

  • Miller, M., & Folk, E. (1975). Strabismus associated with craniofacial anomalies. The American Orthoptic Journal, 25, 27–37.

    Article  CAS  Google Scholar 

  • Miller, M. M., & Guyton, D. L. (1994). Loss of fusion and the development of A or V patterns. Journal of Pediatric Ophthalmology and Strabismus, 31(4), 220–224.

    Article  CAS  Google Scholar 

  • Miller, J. M., Demer, J. L., & Rosenbaum, A. L. (1993). Effect of transposition surgery on rectus muscle paths by magnetic resonance imaging. Ophthalmology, 100(4), 475–487.

    Article  CAS  Google Scholar 

  • Mustari, M. J., Fuchs, A. F., Kaneko, C. R., & Robinson, F. R. (1994). Anatomical connections of the primate pretectal nucleus of the optic tract. The Journal of Comparative Neurology, 349(1), 111–128. https://doi.org/10.1002/cne.903490108. [published Online First: Epub Date].

    Article  CAS  PubMed  Google Scholar 

  • Mustari, M. J., Tusa, R. J., Burrows, A. F., Fuchs, A. F., & Livingston, C. A. (2001). Gaze-stabilizing deficits and latent nystagmus in monkeys with early-onset visual deprivation: Role of the pretectal not. Journal of Neurophysiology, 86(2), 662–675.

    Article  CAS  Google Scholar 

  • Oh, S. Y., Clark, R. A., Velez, F., Rosenbaum, A. L., & Demer, J. L. (2002). Incomitant strabismus associated with instability of rectus pulleys. Investigative Ophthalmology & Visual Science, 43(7), 2169–2178.

    Google Scholar 

  • Pineles, S. L., Rosenbaum, A. L., & Demer, J. L. (2008). Changes in binocular alignment after surgery for concomitant and pattern intermittent exotropia. Strabismus, 16(2), 57–63. https://doi.org/10.1080/09273970802020292. [published Online First: Epub Date].

    Article  PubMed  PubMed Central  Google Scholar 

  • Pineles, S. L., Rosenbaum, A. L., & Demer, J. L. (2009). Decreased postoperative drift in intermittent exotropia associated with A and V patterns. Journal of American Association for Pediatric Ophthalmology and Strabismus, 13(2), 127–131. https://doi.org/10.1016/j.jaapos.2008.10.013. [published Online First: Epub Date].

    Article  PubMed  Google Scholar 

  • Richards, M., Wong, A., Foeller, P., Bradley, D., & Tychsen, L. (2008). Duration of binocular decorrelation predicts the severity of latent (fusion maldevelopment) nystagmus in strabismic macaque monkeys. Investigative Ophthalmology & Visual Science, 49(5), 1872–1878. https://doi.org/10.1167/iovs.07-1375. [published Online First: Epub Date].

    Article  Google Scholar 

  • Robb, R. M., & Boger, W. P., 3rd. (1983). Vertical strabismus associated with plagiocephaly. Journal of Pediatric Ophthalmology and Strabismus, 20(2), 58–62.

    Article  CAS  Google Scholar 

  • Schutte, S., van den Bedem, S. P., van Keulen, F., van der Helm, F. C., & Simonsz, H. J. (2006). A finite-element analysis model of orbital biomechanics. Vision Research, 46(11), 1724–1731. https://doi.org/10.1016/j.visres.2005.11.022. [published Online First: Epub Date].

    Article  PubMed  Google Scholar 

  • Tusa, R. J., Mustari, M. J., Das, V. E., & Boothe, R. G. (2002). Animal models for visual deprivation-induced strabismus and nystagmus. Annals of the New York Academy of Sciences, 956, 346–360.

    Article  Google Scholar 

  • Tychsen, L. (2007). Causing and curing infantile esotropia in primates: The role of decorrelated binocular input (an American Ophthalmological Society thesis). Transactions of the American Ophthalmological Society, 105, 564–593.

    PubMed  PubMed Central  Google Scholar 

  • Tychsen, L., Richards, M., Wong, A., et al. (2008). Spectrum of infantile esotropia in primates: Behavior, brains, and orbits. Journal of American Association for Pediatric Ophthalmology and Strabismus, 12(4), 375–380. https://doi.org/10.1016/j.jaapos.2007.11.010. [published Online First: Epub Date].

    Article  PubMed  Google Scholar 

  • Tychsen, L., Richards, M., Wong, A., Foeller, P., Bradley, D., & Burkhalter, A. (2010). The neural mechanism for Latent (fusion maldevelopment) nystagmus. Journal of Neuro-Ophthalmology, 30(3), 276–283. https://doi.org/10.1097/WNO.0b013e3181dfa9ca. [published Online First: Epub Date].

    Article  PubMed  Google Scholar 

  • Ugolini, G., Klam, F., Doldan Dans, M., et al. (2006). Horizontal eye movement networks in primates as revealed by retrograde transneuronal transfer of rabies virus: Differences in monosynaptic input to “slow” and “fast” abducens motoneurons. The Journal of Comparative Neurology, 498(6), 762–785. https://doi.org/10.1002/cne.21092. [published Online First: Epub Date].

    Article  PubMed  Google Scholar 

  • Urist, M. J. (1951). Horizontal squint with secondary vertical deviations. AMA Archives of Ophthalmology, 46(3), 245–267.

    Article  CAS  Google Scholar 

  • Urist, M. J. (1958). The etiology of the so-called A and V syndromes. American Journal of Ophthalmology, 46(6), 835–844.

    Article  CAS  Google Scholar 

  • Urrets-Zavalia, A., Solares-Zamora, J., & Olmos, H. R. (1961). Anthropological studies on the nature of cyclovertical squint. The British Journal of Ophthalmology, 45(9), 578–596.

    Article  CAS  Google Scholar 

  • van den Bedem, S. P., Schutte, S., van der Helm, F. C., & Simonsz, H. J. (2005). Mechanical properties and functional importance of pulley bands or ‘faisseaux tendineux’. Vision Research, 45(20), 2710–2714. https://doi.org/10.1016/j.visres.2005.04.016. [published Online First: Epub Date].

    Article  PubMed  Google Scholar 

  • Walton, M. M., & Mustari, M. J. (2015). Abnormal tuning of saccade-related cells in pontine reticular formation of strabismic monkeys. Journal of Neurophysiology, 114(2), 857–868.

    Article  CAS  Google Scholar 

  • Walton, M. M. G., & Mustari, M. J. (2017). Comparison of three models of saccade disconjugacy in strabismus. Journal of Neurophysiology, 118(6), 3175–3193.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataliya Pyatka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pyatka, N., Ghasia, F. (2019). Pattern Strabismus: Where Does the Role of the Brain End and the Role of Muscles Begin?. In: Shaikh, A., Ghasia, F. (eds) Advances in Translational Neuroscience of Eye Movement Disorders. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-31407-1_14

Download citation

Publish with us

Policies and ethics