Skip to main content

Graphic Contraction Principle and Applications

  • Chapter
  • First Online:
Mathematical Analysis and Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 154))

Abstract

The purpose of this paper is to emphasize the role of the graphic contractions in metric fixed point theory. Two general results about the fixed points of graphic contractions and several related examples are given. The case of non-self graphic contractions will be also considered. Existence, uniqueness, data dependence, well-posedness, Ulam-Hyers stability, and the Ostrowski property for the fixed point equation will be discussed. Some fixed point results in metric spaces endowed with a partial ordering will be also proved. Finally, open questions and research directions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Berinde, Iterative Approximation of Fixed Points (Springer, Berlin, 2007)

    MATH  Google Scholar 

  2. V. Berinde, Şt. Măruşter, I.A. Rus, An abstract point of view on iterative approximation of fixed points of nonself operators. J. Nonlinear Convex Anal. 15, 851–865 (2014)

    MathSciNet  MATH  Google Scholar 

  3. V. Berinde, Şt. Măruşter, I.A. Rus, Saturated contraction principle for non-self operators, generalizations and applications. Filomat 31, 3391–3406 (2017)

    Article  MathSciNet  Google Scholar 

  4. V. Berinde, A. Petruşel, I.A. Rus, M.-A. Şerban, in The Retraction-Displacement Condition in the Theory of Fixed Point Equation with a Convergent Iterative Algorithm, ed. by T. Rassias, V. Gupta. Mathematical Analysis, Approximation Theory and Their Applications. Springer Optimization and Its Applications, vol. 111, (Springer, Cham, 2016), pp. 75–106

    Google Scholar 

  5. M. Bota-Boriceanu, A. Petruşel, Ulam-Hyers stability for operatorial equations. Analele Univ. Al.I. Cuza Iaşi 57, 65–74 (2011)

    Google Scholar 

  6. A. Chiş-Novac, R. Precup, I.A. Rus, Data dependence of fixed points for nonself generalized contractions. Fixed Point Theory 10, 73–87 (2009)

    MathSciNet  MATH  Google Scholar 

  7. K. Deimling, Nonlinear Functional Analysis (Springer, Berlin, 1985)

    Book  MATH  Google Scholar 

  8. J. Dieudonne, Foundations of Modern Analysis (Academic, New York, 1960)

    MATH  Google Scholar 

  9. A.-D. Filip, I.A. Rus, Fixed point theory for non-self generalized contractions in Kasahara spaces. Ann. West Univ. Timişoara Math-Inf. (to appear)

    Google Scholar 

  10. G.E. Hardy, T.D. Rogers, A generalization of a fixed point theorem of Reich. Canad. Math. Bull. 16, 201–206 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. T.L. Hicks, B.E. Rhoades, A Banach type fixed point theorem. Math. Japon. 24, 327–330 (1979)

    MathSciNet  MATH  Google Scholar 

  12. D.H. Hyers, G. Isac, T.M. Rassias, Topics in Nonlinear Analysis and Applications (World Scientific, Singapore, 1997)

    Book  MATH  Google Scholar 

  13. L.V. Kantorovici, G.P. Akilov,Analyse fonctionelle (MIR, Moscou, 1981)

    Google Scholar 

  14. W.A. Kirk, Contraction mappings and extensions, in ed. by W.A. Kirk, B. Sims, Handbook of Fixed Point Theory (Kluwer Academic Publishers, Dordrecht, 2001)

    Chapter  Google Scholar 

  15. Y.V. Konots, P.P. Zabreiko, The majorization fixed point principle and application to nonlinear integral equations. Fixed Point Theory 13, 547–564 (2012)

    MathSciNet  Google Scholar 

  16. M.A. Krasnoselskii, P.P. Zabrejko, Geometrical Methods in Nonlinear Analysis (Springer, Berlin, 1984)

    Book  Google Scholar 

  17. T.A. Lazăr, A. Petruşel, N. Shahzad, Fixed points for non-self operators and domain invariance theorems. Nonlinear Anal. 70, 117–125 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Şt. Măruşter, The stability of gradient-like methods. Appl. Math. Comput. 17, 103–115 (2001)

    MathSciNet  MATH  Google Scholar 

  19. D. O’Regan, R. Precup, Theorems of Leray-Schauder Type and Applications (Gordon and Breach Science Publishers, Amsterdam, 2001)

    MATH  Google Scholar 

  20. J.M. Ortega, Numerical Analysis (Academic, New York, 1972)

    MATH  Google Scholar 

  21. J.M. Ortega, W.C. Rheinboldt, Iterative Solutions of Nonlinear Equation in Several Variables (Academic, New York, 1970)

    MATH  Google Scholar 

  22. A. Petruşel, I.A. Rus, Fixed point theorems in ordered L-spaces. Proc. Amer. Math. Soc., 134, 411–418 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Petruşel, I.A. Rus, in A Class of Functional-Integral Equations with Applications to a Bilocal Problem, ed. by T.M. Rassias, L. Toth. Topics in Mathematical Analysis and Applications (Springer, Berlin, 2014), pp. 609–631

    Google Scholar 

  24. A. Petruşel, I.A. Rus, M.-A. Şerban, Nonexpansive operators as graphic contractions. J. Nonlinear Convex Anal. 17, 1409–1415 (2016)

    MathSciNet  MATH  Google Scholar 

  25. A. Petruşel, G. Petruşel, B. Samet, J.-C. Yao, Coupled fixed point theorems for symmetric contractions in b-metric spaces with applications to operator equation systems. Fixed Point Theory 17, 459–478 (2016)

    MathSciNet  MATH  Google Scholar 

  26. R. Precup, Methods in Nonlinear Integral Equations, (Kluwer Academic Publishers, Dordrecht, 2002)

    Book  MATH  Google Scholar 

  27. A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc. 132, 1435–1443 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. T.M. Rassias (ed.), Functional Equations, Inequalities and Applications (Kluwer Academic Publishers, Dordrecht, 2003)

    MATH  Google Scholar 

  29. T.M. Rassias (ed.), Handbook of Functional Equations: Stability Theory (Springer, New York, 2014)

    MATH  Google Scholar 

  30. S. Reich, A.J. Zaslavski, Well-posedness of the fixed point problem. Far East J. Math. Sci. 3, 393–401 (2001)

    MathSciNet  MATH  Google Scholar 

  31. W.C. Rheinboldt, A unified convergence theory for a class of iterative processes. SIAM J. Numer. Anal. 5, 42–63 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  32. B.E. Rhoades, A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 226, 257–290 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  33. I.A. Rus, On the method of successive approximations. Revue Roum. Math. Pures et Appl. 17, 1433–1437 (1972)

    MathSciNet  Google Scholar 

  34. I.A. Rus, Weakly Picard mappings. Comment. Math. Univ. Carol. 34, 769–773 (1993)

    MathSciNet  MATH  Google Scholar 

  35. I.A. Rus, Generalized Contractions and Applications (Transilvania Press, Cluj-Napoca, 2001)

    MATH  Google Scholar 

  36. I.A. Rus, Picard operators and applications. Sci. Math. Jpn. 58, 191–219 (2003)

    MathSciNet  MATH  Google Scholar 

  37. I.A. Rus, Metric space with fixed point property with respect to contractions. Studia Univ. Babeş-Bolyai Math. 51, 115–121, (2006)

    MathSciNet  MATH  Google Scholar 

  38. I.A. Rus, Iterates of Bernstein operators, via contraction principle. J. Math. Anal. Appl. 292, 259–261 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. I.A. Rus, Properties of the solutions of those equations for which the Krasnoselskii iteration converges. Carpathian J. Math. 28, 329–336 (2010)

    MathSciNet  MATH  Google Scholar 

  40. I.A. Rus, A müller’s examples to Cauchy problem: an operatorial point of view. Creat. Math. Infor. 21, 215–220 (2012)

    MATH  Google Scholar 

  41. I.A. Rus, An abstract point of view on iterative approximations of fixed points: impact on the theory of fixed points equations. Fixed Point Theory 13, 179–192 (2012)

    MathSciNet  MATH  Google Scholar 

  42. I.A. Rus, in Results and Problems in Ulam Stability of Operatorial Equations and Inclusions, ed. by T. Rassias. Handbook of Functional Equations. Springer Optimization and Its Applications, vol. 96 (Springer, New York, 2014), pp. 323–352

    Google Scholar 

  43. I.A. Rus, The generalized retraction method in fixed point theory for nonself operators. Fixed Point Theory 15, 559–578 (2014)

    MathSciNet  MATH  Google Scholar 

  44. I.A. Rus, Relevant classes of weakly Picard operators. Anal. Univ. de Vest Timişoara Math. Inform. 54, 3–19 (2016)

    MathSciNet  Google Scholar 

  45. I.A. Rus, Some variants of the contraction principle, generalizations and applications. Studia Univ. Babeş-Bolyai Math. 61, 343–358 (2016)

    MathSciNet  MATH  Google Scholar 

  46. I.A. Rus, M.A. Şerban, Operators on infinite dimensional Cartesian product. Anal. Univ. de Vest Timişoara, Math. Inform. 48, 253–263 (2010)

    Google Scholar 

  47. I.A. Rus, M.A. Şerban, Basic problems of the metric fixed point theory and the relevance of a metric fixed point theorem. Carpathian J. Math. 29, 239–258 (2013)

    MathSciNet  MATH  Google Scholar 

  48. I.A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory (Cluj University Press, Cluj-Napoca 2008)

    MATH  Google Scholar 

  49. P.V. Subrahmanyam, Remarks on some fixed point theorems related to Banach’s contraction principle. J. Malh. Phys. Sri. 8, 445–457 (1974); Erratum, 9, 195

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Petruşel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petruşel, A., Rus, I.A. (2019). Graphic Contraction Principle and Applications. In: Rassias, T., Pardalos, P. (eds) Mathematical Analysis and Applications. Springer Optimization and Its Applications, vol 154. Springer, Cham. https://doi.org/10.1007/978-3-030-31339-5_15

Download citation

Publish with us

Policies and ethics