Skip to main content

The Role of Extracellular Vesicles as Paracrine Effectors in Stem Cell-Based Therapies

  • Chapter
  • First Online:
Stem Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1201))

Abstract

Stem cells act in a paracrine manner through the secretion of biologically active cargo that acts on cells locally and systemically. These active molecules include not only soluble factors but also extracellular vesicles (EVs) that have recently emerged as a mechanism of cell-to-cell communication. EVs act as vehicles that transfer molecules between originator and recipient cells, thereby modifying the phenotype and function of the latter. As EVs released from stem cells may successfully activate regenerative processes in injured cells, their application as a form of therapy can be envisaged. EVs exert these proregenerative effects through the modulation of relevant cellular processes including proliferation, angiogenesis, oxidative stress, inflammation, and immunotolerance, among others. In this chapter, we review the preclinical studies that report the effect of stem cell-derived EVs in various pathological models of human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riess P, Molcanyi M, Bentz K et al (2007) Embryonic stem cell transplantation after experimental traumatic brain injury dramatically improves neurological outcome, but may cause tumors. J Neurotrauma 24:216–225

    Article  PubMed  Google Scholar 

  2. Nelson TJ, Ge ZD, Van Orman J et al (2006) Improved cardiac function in infarcted mice after treatment with pluripotent embryonic stem cells. Anat Rec A Discov Mol Cell Evol Biol 288:1216–1224

    Article  PubMed  PubMed Central  Google Scholar 

  3. Teixeira FG, Carvalho MM, Sousa N et al (2013) Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol Life Sci 70:3871–3882

    Article  CAS  PubMed  Google Scholar 

  4. Lai RC, Yeo RW, Lim SK (2015) Mesenchymal stem cell exosomes. Semin Cell Dev Biol 40:82–88

    Article  CAS  PubMed  Google Scholar 

  5. Crapnell K, Blaesius R, Hastings A et al (2013) Growth, differentiation capacity, and function of mesenchymal stem cells expanded. In serum-free medium developed via combinatorial screening. Exp Cell Res 319:1409–1418

    Article  CAS  PubMed  Google Scholar 

  6. Tögel F, Weiss K, Yang Y et al (2007) Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 292:F1626–F1635

    Article  PubMed  CAS  Google Scholar 

  7. Reis LA, Borges FT, Simões MJ et al (2012) Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats. PLoSOne 7:e44092

    Article  CAS  Google Scholar 

  8. Tögel F, Isaac J, Hu Z et al (2005) Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int 67:1772–1784

    Article  PubMed  Google Scholar 

  9. Herrera MB, Bussolati B, Bruno S et al (2007) Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney Int 72:430–441

    Article  CAS  PubMed  Google Scholar 

  10. Bi B, Schmitt R, Israilova M et al (2007) Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol 18:2486–2496

    Article  PubMed  Google Scholar 

  11. Nishida M, Li TS, Hirata K et al (2003) Improvement of cardiac function by bone marrow cell implantation in a rat hypoperfusion heart model. Ann Thorac Surg 75:768–773

    Article  PubMed  Google Scholar 

  12. Shabbir A, Zisa D, Lin H et al (2010) Activation of host tissue trophic factors through JAK-STAT3 signaling: a mechanism of mesenchymal stem cell-mediated cardiac repair. Am J Physiol Heart Circ Physiol 299:H1428–H1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tomita S, Mickle DA, Weisel RD et al (2002) Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg 123:1132–1140

    Article  PubMed  Google Scholar 

  14. Fazel S, Chen L, Weisel RD et al (2005) Cell transplantation preserves cardiac function after infarction by infarct stabilization: augmentation by stem cell factor. J Thorac Cardiovasc Surg 130:1310–1320

    Article  PubMed  Google Scholar 

  15. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084

    Article  CAS  PubMed  Google Scholar 

  16. Yagi H, Soto-Gutierrez A, Parekkadan B et al (2011) Mesenchymal stem cells: mechanism of immunomodulation and homing. Cell Transplant 19:667–679

    Article  Google Scholar 

  17. Ratajczak J, Miekus K, Kucia M et al (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–856

    Article  CAS  PubMed  Google Scholar 

  18. Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  PubMed  Google Scholar 

  19. Théry C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579

    Article  PubMed  CAS  Google Scholar 

  20. Gould SJ, Raposo G (2013) As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles 2. https://doi.org/10.3402/jev.v2i0.20389

    Article  Google Scholar 

  21. Hurley JH (2015) ESCRTs are everywhere. EMBO J 34:2398–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Trajkovic K, Hsu C, Chiantia S et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247

    Article  CAS  PubMed  Google Scholar 

  23. van Niel G, Charrin S, Simoes S et al (2011) The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell 21:708–721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hristov M, Erl W, Linder S et al (2004) Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood 104:2761–2766

    Article  CAS  PubMed  Google Scholar 

  25. Deregibus MC, Cantaluppi V, Calogero R et al (2007) Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110:2440–2448

    Article  CAS  PubMed  Google Scholar 

  26. Valadi H, Ekström K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  27. Ratajczak MZ, Ratajczak J (2016) Horizontal transfer of RNA and proteins between cells by extracellular microvesicles: 14 years later. Clin Transl Med 5:7–15

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ratajczak MZ, Ratajczak J (2017) Extracellular microvesicles as game changers in better understanding the complexity of cellular interactions-from bench to clinical applications. Am J Med Sci 354:449–452

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bruno S, Grange C, Deregibus MC et al (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20:1053–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. He J, Wang Y, Sun S et al (2012) Bone marrow stem cells-derived microvesicles protect against renal injury in the mouse remnant kidney model. Nephrology (Carlton) 17:493–500

    Article  Google Scholar 

  31. Bruno S, Tapparo M, Collino F et al (2017) Renal regenerative potential of different extracellular vesicle populations derived from bone marrow mesenchymal stromal cells. Tissue Eng Part A 23:1262–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Herrera Sanchez MB, Bruno S, Grange C et al (2014) Human liver stem cells and derived extracellular vesicles improve recovery in a murine model of acute kidney injury. Stem Cell Res Ther 5:124–135

    Article  PubMed  CAS  Google Scholar 

  33. Bruno S, Grange C, Collino F et al (2012) Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One 7:e33115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou Y, Xu H, Xu W et al (2013) Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 4:34–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gatti S, Bruno S, Deregibus MC et al (2011) Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant 26:1474–1483

    Article  CAS  PubMed  Google Scholar 

  36. Ju GQ, Cheng J, Zhong L et al (2015) Microvesicles derived from human umbilical cord mesenchymal stem cells facilitate tubular epithelial cell dedifferentiation and growth via hepatocyte growth factor induction. PLoS One 10:e0121534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zou X, Zhang G, Cheng Z et al (2014) Microvesicles derived from human Wharton’s jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1. Stem Cell Res Ther 5:40–53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Gu D, Zou X, Ju G et al (2016) Mesenchymal stromal cells derived extracellular vesicles ameliorate acute renal ischemia reperfusion injury by inhibition of mitochondrial fission through miR-30. Stem Cells Int 2016:2093940–2093952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Shen B, Liu J, Zhang F et al (2016) CCR2 positive exosome released by mesenchymal stem cells suppresses macrophage functions and alleviates ischemia/reperfusion-induced renal injury. Stem Cells Int 2016:1240301–1240310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Choi HY, Moon SJ, Ratliff BB et al (2014) Microparticles from kidney-derived mesenchymal stem cells act as carriers of proangiogenic signals and contribute to recovery from acute kidney injury. PLoS One 9:e87853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Ranghino A, Bruno S, Bussolati B et al (2017) The effects of glomerular and tubular renal progenitors and derived extracellular vesicles on recovery from acute kidney injury. Stem Cell Res Ther 8:24–39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Cantaluppi V, Gatti S, Medica D et al (2012) Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int 82:412–427

    Article  CAS  PubMed  Google Scholar 

  43. Cantaluppi V, Medica D, Mannari C et al (2015) Endothelial progenitor cell-derived extracellular vesicles protect from complement-mediated mesangial injury in experimental anti-Thy1.1 glomerulonephritis. Nephrol Dial Transplant 30:410–422

    Article  CAS  PubMed  Google Scholar 

  44. Burger D, Viñas JL, Akbari S et al (2015) Human endothelial colony-forming cells protect against acute kidney injury role of exosomes. Am J Pathol 185:2309–2323

    Article  CAS  PubMed  Google Scholar 

  45. Jiang ZZ, Liu YM, Niu X et al (2016) Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats. Stem Cell Res Ther 7:24–37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Nagaishi K, Mizue Y, Chikenji T et al (2016) Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci Rep 6:34842–34858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kholia S, Herrera Sanchez MB, Cedrino M et al (2018) Human liver stem cell-derived extracellular vesicles prevent aristolochic acid-induced kidney fibrosis. Front Immunol 9:1639–1655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Eirin A, Zhu XY, Puranik AS et al (2017) Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation. Kidney Int 92:114–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xin H, Li Y, Buller B et al (2012) Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30:1556–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takeda YS, Xu Q (2015) Neuronal differentiation of human mesenchymal stem cells using exosomes derived from differentiating neuronal cells. PLoS One 10:e0135111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zhang Y, Chopp M, Zhang ZG et al (2017) Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem Int 111:69–81

    Article  CAS  PubMed  Google Scholar 

  52. Mead B, Tomarev S (2017) Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms. Stem Cells Transl Med 6:1273–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. El Bassit G, Patel RS, Carter G et al (2017) MALAT1 in human adipose stem cells modulates survival and alternative splicing of PKCδII in HT22 cells. Endocrinology 158:183–195

    PubMed  Google Scholar 

  54. Katsuda T, Tsuchiya R, Kosaka N et al (2013) Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep 3:1197–1208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Lai RC, Arslan F, Lee MM et al (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4:214–222

    Article  CAS  PubMed  Google Scholar 

  56. Arslan F, Lai RC, Smeets MB et al (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10:301–312

    Article  CAS  PubMed  Google Scholar 

  57. Bian S, Zhang L, Duan L et al (2014) Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berl) 92:387–397

    Article  CAS  Google Scholar 

  58. Teng X, Chen L, Chen W et al (2015) Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cell Physiol Biochem 37:2415–2424

    Article  CAS  PubMed  Google Scholar 

  59. Zhao Y, Sun X, Cao W et al (2015) Exosomes derived from human umbilical cord mesenchymal stem cells relieve acute myocardial ischemic injury. Stem Cells Int 2015:761643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Agarwal U, George A, Bhutani S et al (2017) Experimental, systems, and computational approaches to understanding the MicroRNA-mediated reparative potential of cardiac progenitor cell-derived exosomes from pediatric patients. Circ Res 120:701–712

    Article  CAS  PubMed  Google Scholar 

  61. Ibrahim AG, Cheng K, Marban E (2014) Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports 2:606–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ratajczak J, Kucia M, Mierzejewska K et al (2013) Paracrine proangiopoietic effects of human umbilical cord blood-derived purified CD133+ cells–implications for stem cell therapies in regenerative medicine. Stem Cells Dev 22:422–430

    Article  CAS  PubMed  Google Scholar 

  63. Li T, Yan Y, Wang B et al (2013) Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 22:845–854

    Article  CAS  PubMed  Google Scholar 

  64. Yan Y, Jiang W, Tan Y et al (2017) hucMSC exosome-derived gpx1 is required for the recovery of hepatic oxidant injury. Mol Ther 25:465–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tan CY, Lai RC, Wong W et al (2014) Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther 5:76–90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Nong K, Wang W, Niu X et al (2016) Hepatoprotective effect of exosomes from human-induced pluripotent stem cell-derived mesenchymal stromal cells against hepatic ischemia-reperfusion injury in rats. Cytotherapy 18:1548–1559

    Article  CAS  PubMed  Google Scholar 

  67. Lou G, Yang Y, Liu F et al (2017) MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis. J Cell Mol Med 21:2963–2973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tamura R, Uemoto S, Tabata Y (2016) Immunosuppressive effect of mesenchymal stem cell-derived exosomes on a concanavalin A-induced liver injury model. Inflamm Regen 36:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Haga H, Yan IK, Takahashi K et al (2017) Extracellular vesicles from bone marrow-derived mesenchymal stem cells improve survival from lethal hepatic failure in mice. Stem Cells Transl Med 6:1262–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Herrera MB, Fonsato V, Gatti S et al (2010) Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J Cell Mol Med 14:1605–1618

    Article  CAS  PubMed  Google Scholar 

  71. Li X, Liu L, Yang J et al (2016) Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn induced excessive inflammation. EBioMedicine 8:72–82

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhao B, Zhang Y, Han S et al (2017) Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation. J Mol Histol 48:121–132

    Article  CAS  PubMed  Google Scholar 

  73. Zhang J, Chen C, Hu B et al (2016) Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through Erk1/2 signaling. Int J Biol Sci 12:1472–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pu CM, Liu CW, Liang CJ et al (2017) Adipose-derived stem cells protect skin flaps against ischemia/reperfusion injury via interleukin-6 expression. J Invest Dermatol 137:1353–1362

    Article  CAS  PubMed  Google Scholar 

  75. Zhang J, Liu X, Li H et al (2016) Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration byactivatingthePI3K/Akt signalling pathway. Stem Cell Res Ther 7:136–150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Qi X, Zhang J, Yuan H et al (2016) Exosomes secreted by human induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats. Int J Biol Sci 12:836–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang S, Chu WC, Lai RC et al (2016) Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr Cartil 24:2135–2140

    Article  CAS  Google Scholar 

  78. Zhu Y, Wang Y, Zhao B et al (2017) Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis. Stem Cell Res Ther 8:64–75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Nakamura Y, Miyaki S, Ishitobi H et al (2015) Mesenchymal-stem cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett 589:1257–1265

    Article  CAS  PubMed  Google Scholar 

  80. Zhu YG, Feng XM, Abbott J et al (2014) Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells 32:116–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Park J, Kim S, Lim H et al (2019) Therapeutic effects of human mesenchymal stem cell microvesicles in an ex vivo perfused human lung injured with severe E. coli pneumonia. Thorax 74:43–50

    Article  PubMed  Google Scholar 

  82. Aliotta JM, Pereira M, Wen S et al (2016) Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovasc Res 110:319–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Keating A (2012) Mesenchymal stromal cells: new directions. Cell Stem Cell 10:709–716

    Article  CAS  PubMed  Google Scholar 

  84. Di Nicola M, Carlo-Stella C, Magni M et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    Article  PubMed  Google Scholar 

  85. Meisel R, Zibert A, Laryea M et al (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103:4619–4621

    Article  CAS  PubMed  Google Scholar 

  86. Hwu P, Du MX, Lapointe R et al (2000) Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol 164:3596–3599

    Article  CAS  PubMed  Google Scholar 

  87. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    Article  CAS  PubMed  Google Scholar 

  88. Sato K, Ozaki K, Oh I et al (2007) Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109:228–234

    Article  CAS  PubMed  Google Scholar 

  89. Spaggiari GM, Capobianco A, Becchetti S et al (2006) Mesenchymal stem cell–natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107:1484–1490

    Article  CAS  PubMed  Google Scholar 

  90. Djouad F, Charbonnier LM, Bouffi C et al (2007) Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 25:2025–2032

    Article  CAS  PubMed  Google Scholar 

  91. English K, Ryan JM, Tobin L et al (2009) Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(High) forkhead box P3+ regulatory T cells. Clin Exp Immunol 156:149–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Selmani Z, Naji A, Zidi I et al (2008) Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 26:212–222

    Article  CAS  PubMed  Google Scholar 

  93. Corcione A, Benvenuto F, Ferretti E et al (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107:367–372

    Article  CAS  PubMed  Google Scholar 

  94. Mokarizadeh N, Delirezh A, Morshedi G et al (2012) Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Immunol Lett 147:47–54

    Article  CAS  PubMed  Google Scholar 

  95. Zhang B, Yin Y, Lai RC et al (2014) Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev 23:1233–1244

    Article  CAS  PubMed  Google Scholar 

  96. Lo Sicco C, Reverberi D, Balbi C et al (2017) Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization. Stem Cells Transl Med 6:1018–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Du YM, Zhuansun YX, Chen R et al (2018) Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma. Exp Cell Res 363:114–120

    Article  CAS  PubMed  Google Scholar 

  98. Favaro E, Carpanetto A, Lamorte S et al (2014) Human mesenchymal stem cell-derived microvesicles modulate T cell response to islet antigen glutamic acid decarboxylase in patients with type 1 diabetes. Diabetologia 57:1664–1673

    Article  CAS  PubMed  Google Scholar 

  99. Budoni M, Fierabracci A, Luciano R et al (2013) The immunosuppressive effect of mesenchymal stromal cells on B lymphocytes is mediated by membrane vesicles. Cell Transplant 22:369–379

    Article  PubMed  Google Scholar 

  100. Conforti A, Scarsella M, Starc N et al (2014) Microvesicles derived from mesenchymal stromal cells are not as effective as their cellular counterpart in the ability to modulate immune responses in vitro. Stem Cells Dev 23:2591–2599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Blazquez R, Sanchez-Margallo FM, de la Rosa O et al (2014) Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells. Front Immunol 5:556–565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Kordelas L, Rebmann V, Ludwig AK et al (2014) MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 28:970–973

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Camussi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bruno, S., Kholia, S., Deregibus, M.C., Camussi, G. (2019). The Role of Extracellular Vesicles as Paracrine Effectors in Stem Cell-Based Therapies. In: Ratajczak, M. (eds) Stem Cells. Advances in Experimental Medicine and Biology, vol 1201. Springer, Cham. https://doi.org/10.1007/978-3-030-31206-0_9

Download citation

Publish with us

Policies and ethics