Skip to main content

Bioregions of Eastern Brazil, Based on Vascular Plant Occurrence Data

  • Chapter
  • First Online:
Neotropical Diversification: Patterns and Processes

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

The geographical division of the Earth into meaningful biodiversity units (e.g., biomes, areas of endemism, ecoregions or bioregions) is a necessary step for the study of biodiversity and its conservation. Eastern Brazil harbors a significant proportion of the Earth’s terrestrial biodiversity in a geographically complex area. However, the delimitation of biogeographical areas in eastern Brazil has relied on the simultaneous use of biotic (animal and plant distributions and vegetation physiognomy) and abiotic factors, often without an explicit methodology. Here we take advantage of the availability of large numbers of vascular plant specimens and their digitized data, the existence of a well curated taxonomy for the plants that occur in the area, and the emergence of new biogeographic tools in order to identify bioregions (geographic areas that contain similar taxa) of eastern Brazil. To provide a classification scheme suitable to studies of lineages that differ in dispersion, species richness, and endemism, we provide three levels of grouping. The dataset analyzed here had a comparable number of species across eastern Brazil relative to the recent taxonomic synthesis of the Brazilian flora. Maps of richness and endemism are provided for the region, and confirm regions of eastern Brazil recognized for both highly diversity and endemism across both coastal (Serra do Mar and Mantiqueira) and inland mountain ranges (Campos Rupestres), as well as in southern Bahia. The first network analysis divided eastern Brazil into 10 bioregions, which were clustered in five super-bioregions and divided in 23 sub-bioregions in the two additional network analyses. The super-bioregions recovered correspond to the Southern Atlantic Forest/Paraná Forests, the Northern Atlantic Forest, the Espinhaço/Mantiqueira, the Cerrado, and the Caatinga/Diamantina. To some extent, these areas present some congruence with domains, where a major incongruence is distinctiveness of the Espinhaço/Mantiqueira super-bioregion, while the Caatinga/Diamantina super-bioregion presented the highest congruence. Comparisons of species richness, endemism and overlapping of the bioregions with three other classifications (domains, ecoregions and biogeographical provinces) are presented. The shapefiles of the recovered bioregions are available for public use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP (2014) spThin: functions for spatial thinning of species occurrence records for use in ecological models. R package version 0.1.0 [online]. Available from https://CRAN.R-project.org/package=spThin

  • BFG (2015) Growing knowledge: an overview of seed plant diversity in Brazil. Rodriguésia 66:1085–1113. https://doi.org/10.1590/2175-7860201566411

    Article  Google Scholar 

  • BFG (2018) Brazilian Flora 2020: innovation and collaboration to meet Target 1 of the global strategy for plant conservation (GSPC). Rodriguésia 69:1513–1527. https://doi.org/10.1590/2175-7860201869402

    Article  Google Scholar 

  • Bivand R, Lewin-Koh N (2013) maptools: tools for reading and handling spatial objects. R package version 0.8-27. http://CRAN.R-project.org/package=maptools

  • Bivand R, Rundel C (2013) Rgeos: interface to geometry engine – open source (GEOS). R package version 0.3-2. http://CRAN.R-project.org/package=rgeos

  • Bloomfield NJ, Knerr N, Encinas-Viso F (2018) A comparison of network and clustering methods to detect biogeographical regions. Ecography 41:1–10

    Google Scholar 

  • Buffon GLLC (1761) Histoire Naturelle Générale. Imprimerie Royale, Paris

    Google Scholar 

  • Carnaval AC, Hickerson MJ, Haddad CF, Rodrigues MT, Moritz C (2009) Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323:785–789

    CAS  PubMed  Google Scholar 

  • Carnaval AC, Waltari E, Rodrigues MT, Rosauer D, VanDerWal J, Damasceno R, Prates I, Strangas M, Spanos Z, Rivera D, Pie MR, Firkowski CR, Bornschein MR, Ribeiro LF, Moritz C (2014) Prediction of phylogeographic endemism in an environmentally complex biome. Proc R Soc B-Biol Sci 281:20141461

    Google Scholar 

  • Carvalho G (2017) Flora: tools for Interacting with the Brazilian Flora 2020. R package version 0.3.0. https://CRAN.R-project.org/package=flora

  • Costa LP, Leite YL, da Fonseca GA, da Fonseca MT (2000) Biogeography of South American forest mammals: endemism and diversity in the Atlantic Forest 1. Biotropica 32 (4b):872–881

    Google Scholar 

  • Costello MJ, Tsai P, Wong PS, Cheung AKL, Basher Z, Chaudhary C (2017) Marine biogeographic realms and species endemicity. Nat Commun 8. https://doi.org/10.1038/s41467-017-01121-2

  • Cracraft J (1991) Patterns of diversification within continetal biotas: hierarchical congruence among the areas of endemism of Australia vertebrates. Aust Syst Bot 4:211–227

    Google Scholar 

  • Crisci JV, Cigliano MM, Morrone JJ, Roig Junent S (1991) A comparative review of cladistic approaches to historical biogeography of Southern South America. Aust Syst Bot 4:117–126

    Google Scholar 

  • Da Costa RC, de Araujo FS, Lima-Verde LW (2007) Flora and life-form spectrum of deciduous thorn woodland (caatinga) in northeastern, Brazil. J Arid Environ 68:237–247

    Google Scholar 

  • DaSilva MB, Pinto-da-Rocha R, DeSouza AM (2015) A protocol for the delimitation of areas of endemism and the historical regionalization of the Brazilian Atlantic Rain Forest using harvestmen distribution data. Cladistics 31:692–705

    PubMed  Google Scholar 

  • de Candolle AP (1820) Essai elementaire de geographie botanique, volume Dictionnaire des sciences naturelles. F. Levrault, Strasbourg

    Google Scholar 

  • de Mendonça RC, Felfili JM, Walter BMT, Junior MCdS, Rezende AV, Filgueiras TdS, Nogueira PE, Fagg CW (2008) Flora vascular do Bioma Cerrado. Checklist com 12.356 especies. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: ecology and flora, vol 2. Embrapa Informaçâo Tecnológica, Brasilia, pp 10–1279

    Google Scholar 

  • Droissart V, Dauby G, Hardy OJ, Deblauwe V, Harris DJ, Janssens S, Mackinder B, Blach-Overgaard A, Sonke B, Sosef MSM, Stevart T, Svenning JC, Wieringa JJ, Couvreur TLP (2018) Beyond trees: biogeographical regionalization of tropical Africa. J Biogeogr 45:1153–1167. https://doi.org/10.1111/jbi.13190

    Article  Google Scholar 

  • Dutra VF, Alves-Araújo A, Carrijo TT (2015) Angiosperm checklist of Espírito Santo: using electronic tools to improve the knowledge of an Atlantic Forest biodiversity hotspot. Rodriguésia 66:1145–1152

    Google Scholar 

  • Edler D, Guedes T, Zizka A, Rosvall M, Antonelli A (2016) Infomap bioregions: interactive mapping of biogeographical regions from species distributions. Syst Biol 66:197–204

    PubMed Central  Google Scholar 

  • Ferrari A (2017) Biogeographical units matter. Aust Syst Bot 30:391–402. https://doi.org/10.1071/SB16054

    Article  Google Scholar 

  • Fiaschi P, Pirani JR (2005) Four new species of Schefflera (Araliaceae) from Espírito Santo State, Brazil. Kew Bull 60:77–85

    Google Scholar 

  • Fiaschi P, Pirani JR (2009) Review of plant biogeographic studies in Brazil. J Syst Evol 47:477–496

    Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Google Scholar 

  • Flora do Brasil 2020 (under construction). Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/. Accessed 29 Mar 2019

  • Flora do Brasil 2020, under construction. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/. Accessed 16 Feb 2019

  • Forzza RC, Baumgratz JFA, Bicudo CEM, Carvalho AA Jr, Costa A, Costa DP, Hopkins M, Leitman PM, Lohmann LG, Maia LC, Martinelli G, Menezes M, Morim MP, Coelho MAN, Peixoto AL, Pirani JR, Prado J, Queiroz LP, Souza VC, Stehmann JR, Sylvestre LS, Walter BMT, Zappi D (eds) (2010) Catálogo de plantas e fungos do Brasil. Vol. 1, 2. Andrea Jakobsson Estúdio Editorial, Jardim Botânico do Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227

    CAS  PubMed  Google Scholar 

  • Goldberg EE, Lancaster LT, Ree RH (2011) Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Syst Biol 60:451–465

    PubMed  Google Scholar 

  • Gonzalez-Orozco CE, Ebach MC, Laffan S, Thornhill AH, Knerr NJ, Schmidt-Lebuhn AN, Cargill CC, Clements M, Nagalingum NS, Mishler BD, Miller JT (2014) Quantifying phytogeographical regions of Australia using geospatial turnover in species composition. PLoS One 9(3):e92558

    PubMed  PubMed Central  Google Scholar 

  • Guerin GR, Ruokolainen L, Lowe AJ (2015) A georeferenced implementation of weighted endemism. Methods Ecol Evol 6:845–852

    Google Scholar 

  • Hazzi NA, Moreno JS, Ortiz-Movliav C, Palacio RD (2018) Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes. Proc Natl Acad Sci USA 115:7985–7990. https://doi.org/10.1073/pnas.1803908115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hijmans RJ (2016) Raster: geographic data analysis and modeling. R package version 2.5-8. https://CRAN.R-project.org/package=raster

  • Hijmans RJ, Phillips S, Leathwick J, Elith J (2017) Dismo: species distribution modeling. R package version 1.1-4. https://CRAN.R-project.org/package=dismo

  • Hipp AL, Manos PS, Gonzalez-Rodriguez A, Hahn M, Kaproth M, McVay JD, Avalos SV, Cavender-Bares J (2018) Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytol 217:439–452. https://doi.org/10.1111/nph.14773

    Article  CAS  PubMed  Google Scholar 

  • Holdridge LR (1947) Determination of world formations from simple climatic data. Science 105:367–368

    CAS  PubMed  Google Scholar 

  • IBGE (2004) Mapa de Biomas do Brasil, primeira aproximação. Available at http://www.ibge.gov.br

  • Kreft H, Jetz W (2010) A framework for delineating biogeographical regions based on species distributions. J Biogeogr 37:2029–2053

    Google Scholar 

  • Linder HP (2001) On areas of endemism, with an example from the African Restionaceae. Syst Biol 50:892–912

    CAS  PubMed  Google Scholar 

  • Loeuille B, Semir J, Lohmann LG, Pirani JR (2015) A phylogenetic analysis of Lychnophorinae (Asteraceae: Vernonieae) based on molecular and morphological data. Syst Bot 40:299–315

    Google Scholar 

  • Löwenberg-Neto P (2014) Neotropical region: a shapefile of Morrone’s (2014) biogeographical regionalisation. Zootaxa 3802:300

    Google Scholar 

  • Martini AMZ, Fiaschi P, Amorim AM, Paixao JM (2007) A hot-point within a hot-spot: a high diversity site in Brazil’s Atlantic Forest. Biodivers Conserv 16:3111–3128. https://doi.org/10.1007/s10531-007-9166-6

    Article  Google Scholar 

  • Matzke NJ (2014) Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst Biol 63:951–970

    PubMed  Google Scholar 

  • Morellato LPC, Haddad CFB (2000) Introduction: the Brazilian Atlantic forest. Biotropica 32(4b):786–792

    Google Scholar 

  • Morrone JJ (1994) On the identification of areas of endemism. Syst Biol 43:438–441. https://doi.org/10.1093/sysbio/43.3.438

    Article  Google Scholar 

  • Morrone JJ (2009) Evolutionary biogeography: an integrative approach with case studies. Columbia University Press, New York

    Google Scholar 

  • Morrone JJ (2014a) Biogeographical regionalisation of the Neotropical region. Zootaxa 3782:1–110

    PubMed  Google Scholar 

  • Morrone JJ (2014b) Parsimony analysis of endemicity (PAE) revisited. J Biogeogr 41:842–854. https://doi.org/10.1111/jbi.12251

    Article  Google Scholar 

  • Murray-smith C, Brummitt NA, Oliveira-Filho AT, Bachman S, Moat J, Lughadha EMN, Lucas EJ (2009) Plant diversity hotspots in the Atlantic coastal forests of Brazil. Conserv Biol 23:151–163

    PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. https://doi.org/10.1038/35002501

    Article  CAS  PubMed  Google Scholar 

  • Nelson GJ, Platnick NI (1981) Systematics and biogeography, cladistics and vicariance. Columbia University Press, New York

    Google Scholar 

  • Oliveira-Filho AT, Fontes MAL (2000) Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica 32(4b):793–810

    Google Scholar 

  • Oliveira-Filho AT, Ratter JA (2002) Vegetation physiognomies and woody flora of the Cerrado Biome. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil. Ecology and natural history of a Neotropical Savanna. Columbia University Press, New York, pp 91–120

    Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.C

    Article  Google Scholar 

  • Pebesma EJ, Bivand R (2005) Classes and methods for spatial data in R. R News 5(2). http://cran.r-project.org/doc/Rnews/

  • Perera SJ, Proches S, Ratnayake-Perera D, Ramdhani S (2018) Vertebrate endemism in south-eastern Africa numerically redefines a biodiversity hotspot. Zootaxa 4382:56–92. https://doi.org/10.11646/zootaxa.4382.1.2

    Article  PubMed  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Google Scholar 

  • Platnick NI, Nelson GJ (1978) A method of analysis for historical biogeography. Syst Zool 27(1–16). https://doi.org/10.2307/2412808

  • Porzecanski AL, Cracraft J (2005) Cladistic analysis of distributions and endemism (CADE): using raw distributions of birds to unravel the biogeography of the South American aridlands. J Biogeogr 32:261–275

    Google Scholar 

  • Prado DE (2003) As Caatingas da America do Sul. In: Leal IR, Tabarelli M, da Silva JMC (eds) Ecologia e conservacao da caatinga. Univwersitaria da UFPE, Recife, pp 3–74

    Google Scholar 

  • Prado J, Sylvestre LS, Labiak PH, Windisch PG, Salino A, Barros ICL, Hirai RY, Almeida TE, Santiago ACP, Kieling-Rubio MA, Pereira AFN, Øllgaard B, Ramos CGV, Mickel JT, Dittrich VAO, Mynssen CM, Schwartsburd PB, Condack JPS, Pereira JBS, Matos FB (2015) Diversity of ferns and lycophytes in Brazil. Rodriguésia 66:1073–1085. https://doi.org/10.1590/2175-7860201566410

    Article  Google Scholar 

  • Quintero I, Jetz W (2018) Global elevational diversity and diversification of birds. Nature 555:246

    CAS  PubMed  Google Scholar 

  • R_Core_Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ratter JA, Bridgewater S, Ribeiro JF (2006) Biodiversity patterns of the woody vegetation of the Brazilian Cerrado. In: Pennington RT, Lewis GP, Ratter JA (eds) Neotropical savannas and seasonally dry forests: plant diversity, biogeography and conservation. The Systematics Association Special Volume. Vol Series 69. CRC, Boca Raton, pp 31–66

    Google Scholar 

  • Reginato M, Goldenberg R (2013) Two new species of Leandra s.str. (Melastomataceae) from the Atlantic Forest in Espirito Santo, Brazil. Blumea 57:210–214

    Google Scholar 

  • Reginato M, Michelangeli FA (2016) Untangling the phylogeny of Leandra s.str. (Melastomataceae, Miconieae). Mol Phylogenet Evol 96:17–32

    PubMed  Google Scholar 

  • Rocha MJR, Batista JAN, Guimaraes PJF, Michelangeli FA (2016) Phylogenetic relationships in the Marcetia alliance (Melastomeae, Melastomataceae) and implications for generic circumscription. Bot J Linn Soc 181:585–609. https://doi.org/10.1111/boj.12429

    Article  Google Scholar 

  • Rojas A, Patarroyo P, Mao L, Bengtson P, Kowalewski M (2017) Global biogeography of Albian ammonoids: a network-based approach. Geology 45:659–662. https://doi.org/10.1130/g38944.1

    Article  Google Scholar 

  • Ronquist F, Sanmartin I (2011) Phylogenetic methods in biogeography. Annu Rev Ecol Evol Syst 42:441–464. https://doi.org/10.1146/annurev-ecolsys-102209-144710

    Article  Google Scholar 

  • Rosvall M, Bergstrom C (2008) Maps of information flow reveal community structure in complex networks. Proc Natl Acad Sci 105:1118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saiter FZ, Brown JL, Thomas WW, de Oliveira-Filho AT, Carnaval AC (2016) Environmental correlates of floristic regions and plant turnover in the Atlantic Forest hotspot. J Biogeogr 43:2322–2331

    Google Scholar 

  • Sampaio EVSB (1995) Overview of the Brazilian Caatinga. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally tropical dry forests. Cambridge University Press, Cambridge, pp 35–63

    Google Scholar 

  • Sclater PL (1858) On the general geographical distribution of the members of the class aves. J Proc Linn Soc Zool 2:130–136

    Google Scholar 

  • Segatto ALA, Reck-Kortmann M, Turchetto C, Freitas LB (2017) Multiple markers, niche modelling, and bioregions analyses to evaluate the genetic diversity of a plant species complex. BMC Evol Biol 17. https://doi.org/10.1186/s12862-017-1084-y

  • Silva JMC, de Sousa MC, Castelletti CH (2004) Areas of endemism for passerine birds in the Atlantic forest, South America. Glob Ecol Biogeogr 13(1):85–92

    Google Scholar 

  • Silveira FA, Negreiros D, Barbosa NP, Buisson E, Carmo FF, Carstensen DW, Conceição AA, Cornelissen TG, Echternacht L, Fernandes GW, Garcia QS (2016) Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant Soil 403:129–152

    CAS  Google Scholar 

  • Spalink D, Kriebel R, Li P, Pace MC, Drew BT, Zaborsky JG, Rose J, Drummond CP, Feist MA, Alverson WS, Waller DM, Cameron KM, Givnish TJ, Sytsma KJ (2018) Spatial phylogenetics reveals evolutionary constraints on the assembly of a large regional flora. Am J Bot 105:1938–1950. https://doi.org/10.1002/ajb2.1191

    Article  PubMed  Google Scholar 

  • Spehn EM, Rudmann-Maurer K, Körner C (2011) Moutain biodiversity. Plant Ecol Divers 4:301–302

    Google Scholar 

  • Staggemeier VG, Diniz-Filho JAF, Forest F, Lucas E (2015) Phylogenetic analysis in Myrcia section Aulomyrcia and inferences on plant diversity in the Atlantic rainforest. Ann Bot 115:747–761

    PubMed  PubMed Central  Google Scholar 

  • Stehmann JR, Forzza RC, Alexandre S, Sobral M, DPd C, Kamino LHY (2009) Diversidade taxonômica na Floresta Atlântica. In: Stehmann JR, Forzza RC, Alexandre S, Sobral M, DPd C, Kamino LHY (eds) Plantas da Floresta Atlântica. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, pp 3–40

    Google Scholar 

  • Szumik CA, Goloboff PA (2004) Areas of endemism: an improved optimality criterion. Syst Biol 53:968–977. https://doi.org/10.1080/10635150490888859

    Article  PubMed  Google Scholar 

  • Szumik CA, Goloboff PA (2015) Higher taxa and the identification of areas of endemism. Cladistics 31:568–572. https://doi.org/10.1111/cla.12112

    Article  PubMed  Google Scholar 

  • Szumik C, Aagesen L, Casagranda D, Arzamendia V, Baldo D, Claps LE, Cuezzo F, Gomez JMD, Di Giacomo A, Giraudo A, Goloboff P, Gramajo C, Kopuchian C, Kretzschmar S, Lizarralde M, Molina A, Mollerach M, Navarro F, Nomdedeu S, Panizza A, Pereyra VV, Sandoval M, Scrocchi G, Zuloaga FO (2012) Detecting areas of endemism with a taxonomically diverse data set: plants, mammals, reptiles, amphibians, birds, and insects from Argentina. Cladistics 28:317–329. https://doi.org/10.1111/j.1096-0031.2011.00385.x

    Article  PubMed  Google Scholar 

  • Takhtajan A (1986) Floristic regions of the world. University of California Press, Berkeley

    Google Scholar 

  • Thomas WW, Carvalho AD, Amorim AM, Garrison J, Santos TD (2008) Diversity of woody plants in the Atlantic coastal forest of southern Bahia, Brazil. Mem NY Bot Gard 100:21–66

    Google Scholar 

  • Topel M, Zizka A, Calio MF, Scharn R, Silvestro D, Antonelli A (2017) SpeciesGeoCoder: fast categorization of species occurrences for analyses of biodiversity, biogeography, ecology, and evolution. Syst Biol 66:145–151. https://doi.org/10.1093/sysbio/syw064

    Article  PubMed  Google Scholar 

  • Vilhena DA, Antonelli A (2015) A network approach for identifying and delimiting biogeographical regions. Nat Commun 6. https://doi.org/10.1038/ncomms7848

  • von Humboldt A (1808) Ansichten der Natur mit wissenschaftlichen Erlauterungen. J.G. Cotta, Tubingen

    Google Scholar 

  • von Humboldt A, Bonpland A (1805) Essai sur la geographie des plantes. Paris

    Google Scholar 

  • Wallace AR (1876) The geographical distribution of animals, vol 1. Harper & Brothers, New York

    Google Scholar 

  • Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge

    Google Scholar 

  • Zizka A, Silvestro D, Andermann T, Azevedo J, Duarte RItter C, Edler D, Farooq H, Herdean A, Ariza M, Scharn R, Svanteson S, Wengtrom N, Zizka V, Antonelli A (2018) CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. https://github.com/ropensci/CoordinateCleaner

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reginato, M., Michelangeli, F.A. (2020). Bioregions of Eastern Brazil, Based on Vascular Plant Occurrence Data. In: Rull, V., Carnaval, A. (eds) Neotropical Diversification: Patterns and Processes. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-31167-4_18

Download citation

Publish with us

Policies and ethics