Skip to main content

A Reliable Procedure for the Construction of a Statistical Shape Model of the Cranial Vault

  • Conference paper
  • First Online:
Design Tools and Methods in Industrial Engineering (ADM 2019)

Abstract

The application of CAx tools in surgery is representing a breakthrough for clinical practice, both in terms of effectiveness and costs. Working directly on the patient’s own diagnostic images, this approach provides powerful tools for pre-operative simulation, complex-surgery planning, quantitative evaluation of asymmetry or dysmorphism and for the design of the patient-specific instrumentation. To exploit its full potential, methodologies are being developed to automatize and simplify the existing tools and strategies, in order to make them available also to less experienced CAx users, or directly to the surgeons.

With this aim, it is proposed a methodological procedure to automatically create a Statistical Shape Model of the cranial vault starting from a Training Set of pathologically unaffected adult crania. The Statistical Shape Model is useful as a template for a data-driven restoration of the physiological shape of the considered anatomy. The proposed procedure provides a reliable strategy for robust automatic detection of shape correspondence. Not requiring any user intervention, the number of samples in the Training Set can be increased at will to consequently increase the variability, and therefore the accuracy, of the resulting parametric model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martelli, N., Serrano, C., van den Brink, H., Pineau, J., Prognon, P., Borget, I., El Batti, S.: Advantages and disadvantages of 3-dimensional printing in surgery: a systematic review. Surgery 159(6), 1485–1500 (2016)

    Article  Google Scholar 

  2. Tarsitano, A., Battaglia, S., Crimi, S., Ciocca, L., Scotti, R., Marchetti, C.: Is a computer-assisted design and computer-assisted manufacturing method for mandibular reconstruction economically viable? J. Cranio-Maxillo-Fac. Surg. 44(7), 795–799 (2016)

    Article  Google Scholar 

  3. Rogers-Vizena, C.R., Sporn, S.F., Daniels, K.M., Padwa, B.L., Weinstock, P.: Cost-benefit analysis of three-dimensional craniofacial models for midfacial distraction: a pilot study. Cleft Palate-Craniofacial J. 54(5), 612–617 (2017)

    Article  Google Scholar 

  4. Volpe, Y., Furferi, R., Governi, L., Uccheddu, F., Carfagni, M., Mussa, F., Scagnet, M., Genitori, L.: Surgery of complex craniofacial defects: a single-step AM-based methodology. Comput. Methods Programs Biomed. 165, 225–233 (2018)

    Article  Google Scholar 

  5. Bartalucci, C., Furferi, R., Governi, L., Volpe, Y.: a survey of methods for symmetry detection on 3d high point density models in biomedicine. Symmetry 10(7), 263 (2018)

    Article  Google Scholar 

  6. Buonamici, F., Furferi, R., Genitori, L., Governi, L., Marzola, A., Mussa, F., Volpe, Y.: Reverse engineering techniques for virtual reconstruction of defective skulls: an overview of existing approaches. Comput. Aided Des. Appl. 16(1), 103–112 (2018)

    Article  Google Scholar 

  7. Martini, M., Klausing, A., Messing-Jünger, M., Lüchters, G.: The self-defining axis of symmetry: a new method to determine optimal symmetry and its application and limitation in craniofacial surgery. J. Cranio-Maxillofac. Surg. 45(9), 1558–1565 (2017)

    Article  Google Scholar 

  8. Grammar, K., Thornhill, R.: Human facial attractiveness and sexual selection: the role of averageness and symmetry. J. Comp. Psychol. 108(3), 233–242 (1994)

    Article  Google Scholar 

  9. Gangestad, S.W., Thornhill, R., Yeo, R.A.: Facial attractiveness, developmental stability, and fluctuating asymmetry. Ethol. Sociobiol. 15(2), 73–85 (1994)

    Article  Google Scholar 

  10. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  11. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001)

    Article  Google Scholar 

  12. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: SIGGRAPH 1999, pp. 187–194. ACM Press (1999)

    Google Scholar 

  13. Heimann, T., et al.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009)

    Article  Google Scholar 

  14. Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)

    Article  Google Scholar 

  15. Fuessinger, M.A., Schwarz, S., Cornelius, C.P., Metzger, M.C., Ellis, E., Probst, F., Semper-Hogg, W., Gass, M., Schlager, S.: Planning of skull reconstruction based on a statistical shape model combined with geometric morphometrics. Int. J. Comput. Assist. Radiol. Surg. 13(4), 519–529 (2018)

    Article  Google Scholar 

  16. Cerveri, P., Belfatto, A., Manzotti, A.: Pair-wise vs group-wise registration in statistical shape model construction: representation of physiological and pathological variability of bony surface morphology. Comput. Methods Biomech. Biomed. Eng. 22(7), 772–787 (2019)

    Article  Google Scholar 

  17. Bookstein, F.L.: Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med. Image Anal. 1(3), 225–243 (1997)

    Article  Google Scholar 

  18. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Training models of shape from sets of examples. In: Hogg, D., Boyle, R. (eds.) BMVC 1992. Springer, London (1992)

    Google Scholar 

  19. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002)

    MATH  Google Scholar 

  20. Vos, F.M., de Bruin, P.W., Aubel, J.C.M., Streekstra G.J., Maas, M., van Villet, L., Vossepoel, A.: A statistical shape model without using landmarks. In: ICPR 2004, vol. 3. IEEE (2004)

    Google Scholar 

  21. Brett, A.D., Taylor, C.J.: A method of automated landmark generation for automated 3D PDM construction. Image Vis. Comput. 18(9), 739–748 (1999)

    Article  Google Scholar 

  22. Audenaert, E.A., Van Houcke, J., Almeida, D.F., Paelinck, L., Peiffer, M., Steenackers, G., Vandermeulen, D.: Cascaded statistical shape model based segmentation of the full lower limb in CT. Comput. Methods Biomech. Biomed. Eng. 22(6), 644–657 (2019)

    Article  Google Scholar 

  23. Di Angelo, L., Di Stefano, P., Governi, L., Marzola, A., Volpe, Y.: A robust and automatic method for the best Symmetry Plane detection of the craniofacial skeletons. Symmetry 11(2), 245 (2019)

    Article  Google Scholar 

  24. Möller, T., Trumbore, B.: Fast, minimum storage ray-triangle intersection. J. Graph. Tools 2(1), 21–28 (1997)

    Article  Google Scholar 

  25. Marzola, A., Governi, L., Genitori, L., Mussa, F., Volpe, Y., Furferi, R.: A semi-automatic hybrid approach for defective skulls reconstruction. Comput. Aided Des. Appl. 17(1), 190–204 (2019)

    Article  Google Scholar 

  26. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  27. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: SIGGRAPH 2001, pp. 67–76. ACM Press (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Marzola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marzola, A., Servi, M., Volpe, Y. (2020). A Reliable Procedure for the Construction of a Statistical Shape Model of the Cranial Vault. In: Rizzi, C., Andrisano, A.O., Leali, F., Gherardini, F., Pini, F., Vergnano, A. (eds) Design Tools and Methods in Industrial Engineering. ADM 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-31154-4_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31154-4_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31153-7

  • Online ISBN: 978-3-030-31154-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics