Skip to main content

Low Cost Device to Perform 3D Acquisitions Based on ChAruCo Markers

  • Conference paper
  • First Online:
Design Tools and Methods in Industrial Engineering (ADM 2019)

Abstract

In the field of cultural heritage, operators make use of high resolution orthophotos of paintings both for purposes related to restoration and monitoring of art pieces and for realizing online documentations and exhibitions. Unfortunately, artworks to be restored and/or presented in digital museums are painted on canvas which are far to be perfectly planar. Therefore, technical documentation accompanying an artwork to be stored in digital archives or museums can be enriched by information related to the 3D shape of the canvas. In this paper, both the design of a portable low-cost device that allows the acquisition of the 3D geometry of the painting and a procedure to triangulate 3D data are proposed. Such a procedure, working using the principle of laser-camera triangulation, is based on the use of a set of fiducial markers to set and continuously control the reciprocal orientation of the laser source and of the camera.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vassilopoulou, S., Hurni, L., Dietrich, V., Baltsavias, E., Pateraki, M., Lagios, E., Parcharidis, I.: Orthophoto generation using IKONOS imagery and high-resolution DEM: a case study on volcanic hazard monitoring of Nisyros Island (Greece). ISPRS J. Photogramm. Remote Sens. 57, 24–38 (2002). https://doi.org/10.1016/S0924-2716(02)00126-0

    Article  Google Scholar 

  2. Jacobsen, K., Passini, R.: Accuracy of digital orthophotos from high resolution space imagery. In: Proceedings of the Workshop High Resolution Mapping from Space (2003)

    Google Scholar 

  3. Gros, P.: How to use the cross ratio to compute 3D invariants from two images how to use the cross ratio to compute projective invariants from two images? (1994). https://doi.org/10.1007/3-540-58240-1_6

  4. Mohr, R., Gravir, B.T.: Projective geometry for image analysis (1996)

    Google Scholar 

  5. Remondino, F., Rizzi, A., Barazzetti, L., Scaioni, M., Fassi, F., Brumana, R., Pelagotti, A.: Review of geometric and radiometric analyses of paintings. Photogramm. Rec. 26, 439–461 (2011). https://doi.org/10.1111/j.1477-9730.2011.00664.x

    Article  Google Scholar 

  6. Liverani, A., Leali, F., Pellicciari, M.: Real-time 3D features reconstruction through monocular vision. Int. J. Interact. Des. Manuf. 4, 103–112 (2010). https://doi.org/10.1007/s12008-010-0093-5

    Article  Google Scholar 

  7. Volpe, Y., Furferi, R., Governi, L., Tennirelli, G.: Computer-based methodologies for semi-automatic 3D model generation from paintings. Int. J. Comput. Aided Eng. Technol. 6, 88 (2014). https://doi.org/10.1504/IJCAET.2014.058012

    Article  Google Scholar 

  8. Barazzetti, L., Remondino, F., Scaioni, M., Lo Brutto, M., Rizzi, A., Brumana, R.: Geometric and radiometric analysis of paintings, pp. 62–67 (2010)

    Google Scholar 

  9. Bimber, O., Coriand, F., Kleppe, A., Bruns, E., Zollmann, S., Langlotz, T.: Superimposing pictorial artwork with projected imagery. In: ACM SIGGRAPH 2006 Courses on - SIGGRAPH 2006, p. 10. ACM Press, New York (2006). https://doi.org/10.1145/1185657.1185805

  10. Governi, L., Carfagni, M., Furferi, R., Puggelli, L., Volpe, Y.: Digital bas-relief design: a novel shape from shading-based method. Comput. Aided. Des. Appl. 11, 153–164 (2014). https://doi.org/10.1080/16864360.2014.846073

    Article  Google Scholar 

  11. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection (2006). https://doi.org/10.1007/11744023_34

  12. Santachiara, M., Gherardini, F., Leali, F.: An augmented reality application for the visualization and the pattern analysis of a Roman mosaic. IOP Conf. Ser. Mater. Sci. Eng. 364, 012094 (2018). https://doi.org/10.1088/1757-899X/364/1/012094

    Article  Google Scholar 

  13. Köhler, J., Pagani, A., Stricker, D.: Detection and identification techniques for markers used in computer vision. In: VLUDS 2010 - Visualization of Large and Unstructured Data Sets - Applications in Geospatial Planning, Modeling and Engineering (IRTG 1131 Workshop) (2010). https://doi.org/10.4230/OASIcs.VLUDS.2010.36

  14. An, G., Lee, S., Seo, M.-W., Yun, K., Cheong, W.-S., Kang, S.-J., An, G.H., Lee, S., Seo, M.-W., Yun, K., Cheong, W.-S., Kang, S.-J.: Charuco board-based omnidirectional camera calibration method. Electronics 7, 421 (2018). https://doi.org/10.3390/electronics7120421

    Article  Google Scholar 

  15. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Marín-Jiménez, M.J.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 47, 2280–2292 (2014). https://doi.org/10.1016/j.patcog.2014.01.005

    Article  Google Scholar 

  16. Furferi, R., Governi, L., Volpe, Y., Carfagni, M.: Design and assessment of a machine vision system for automatic vehicle wheel alignment. Int. J. Adv. Robot. Syst. 10, 242 (2013). https://doi.org/10.5772/55928

    Article  Google Scholar 

  17. Vosselman, G., Gorte, B.G.H., Sithole, G., Rabbani, T.: Recognising structure in laser scanning point clouds (2004). https://research.utwente.nl/en/publications/recognising-structure-in-laser-scanning-point-clouds

  18. Scaramuzza, D., Harati, A., Siegwart, R.: Extrinsic self calibration of a camera and a 3D laser range finder from natural scenes. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4164–4169. IEEE (2007). https://doi.org/10.1109/IROS.2007.4399276

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Puggelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Puggelli, L., Furferi, R., Governi, L. (2020). Low Cost Device to Perform 3D Acquisitions Based on ChAruCo Markers. In: Rizzi, C., Andrisano, A.O., Leali, F., Gherardini, F., Pini, F., Vergnano, A. (eds) Design Tools and Methods in Industrial Engineering. ADM 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-31154-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31154-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31153-7

  • Online ISBN: 978-3-030-31154-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics