Skip to main content

A Decomposed Fourier-Motzkin Elimination Framework to Derive Vessel Capacity Models

  • Conference paper
  • First Online:
Computational Logistics (ICCL 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11756))

Included in the following conference series:

Abstract

Accurate Vessel Capacity Models (VCMs) expressing the trade-off between different container types that can be stowed on container vessels are required in core liner shipping functions such as uptake-, capacity-, and network management. Today, simple models based on volume, weight, and refrigerated container capacity are used for these tasks, which causes overestimations that hamper decision making. Though previous work on stowage planning optimization in principle provide fine-grained linear Vessel Stowage Models (VSMs), these are too complex to be used in the mentioned functions. As an alternative, this paper contributes a novel framework based on Fourier-Motzkin Elimination that automatically derives VCMs from VSMs by projecting unneeded variables. Our results show that the projected VCMs are reduced by an order of magnitude and can be solved 20–34 times faster than their corresponding VSMs with only a negligible loss in accuracy. Our framework is applicable to LP models in general, but are particularly effective on block-angular structured problems such as VSMs. We show similar results for a multi-commodity flow problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ajspur, M.L., Jensen, R.M.: Using Fourier-Motzkin-elimination to derive capacity models of container vessels. Technical Report TR-2017-197, IT University of Copenhagen (2017)

    Google Scholar 

  2. Ambrosino, D., Sciomachen, A., Tanfani, E.: Stowing a containership: the master bay plan problem. Transp. Res. Part A: Policy Pract. 38(2), 81–99 (2004)

    Google Scholar 

  3. Andersen, E.D., Andersen, K.D.: Presolving in linear programming. Math. Program. 71(2), 221–245 (1995)

    Article  MathSciNet  Google Scholar 

  4. Benoy, F., King, A., Mesnard, F.: Computing convex hulls with a linear solver. Theory Pract. Logic Program. 5(1–2), 259–271 (2005)

    Article  Google Scholar 

  5. Delgado, A.: Models and Algorithms for Container Vessel Stowage Optimization. Ph.D. thesis, IT University of Copenhagen (2013)

    Google Scholar 

  6. Duffin, R.J.: On Fourier’s analysis of linear inequality systems, pp. 71–95. Springer, Heidelberg (1974). https://doi.org/10.1007/BFb0121242

    Book  MATH  Google Scholar 

  7. Fordan, A., Yap, R.H.C.: Early projection in CLP(R). In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 177–191. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2_14

    Chapter  Google Scholar 

  8. Huynh, T., Lassez, C., Lassez, J.L.: Practical issues on the projection of polyhedral sets. Ann. Math. Artif. Intell. 6(4), 295–315 (1992)

    Article  MathSciNet  Google Scholar 

  9. Jensen, R.M., Ajspur, M.L.: The standard capacity model: towards a polyhedron representation of container vessel capacity. In: Cerulli, R., Raiconi, A., Voß, S. (eds.) ICCL 2018. LNCS, vol. 11184, pp. 175–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00898-7_11

    Chapter  Google Scholar 

  10. Jensen, R.M., Pacino, D., Ajspur, M.L., Vesterdal, C.: Container Vessel Stowage Planning. Weilbach (2018)

    Google Scholar 

  11. Jones, C., Kerrigan, E.C., Maciejowski, J.: Equality set projection: a new algorithm for the projection of polytopes in halfspace representation. Technical report, Cambridge University Engineering Dept (2004)

    Google Scholar 

  12. Jones, K., Lustig, I., Farwolden, J., Powell, W.: Multicommodity network flows: the impact of formulation on decomposition. Math. Program. 62, 95–117 (1993)

    Article  MathSciNet  Google Scholar 

  13. Kang, J.G., Kim, Y.D.: Stowage planning in maritime container transportation. J. Oper. Res. Soc. 53(4), 415–426 (2002)

    Article  MathSciNet  Google Scholar 

  14. Lassez, J.L.: Querying constraints. In: Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), pp. 288–298. ACM (1990)

    Google Scholar 

  15. Lukatskii, A.M., Shapot, D.V.: A constructive algorithm for folding large-scale systems of linear inequalities. Comput. Math. Math. Phys. 48(7), 1100–1112 (2008)

    Article  MathSciNet  Google Scholar 

  16. Pacino, D., Delgado, A., Jensen, R.M., Bebbington, T.: Fast generation of near-optimal plans for eco-efficient stowage of large container vessels. In: Böse, J.W., Hu, H., Jahn, C., Shi, X., Stahlbock, R., Voß, S. (eds.) ICCL 2011. LNCS, vol. 6971, pp. 286–301. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24264-9_22

    Chapter  Google Scholar 

  17. Shapot, D.V., Lukatskii, A.M.: Solution building for arbitrary system of linear inequalities in an explicit form. Am. J. Comput. Math. 2(01), 1 (2012)

    Article  Google Scholar 

  18. Simon, A., King, A.: Exploiting sparsity in polyhedral analysis. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 336–351. Springer, Heidelberg (2005). https://doi.org/10.1007/11547662_23

    Chapter  MATH  Google Scholar 

  19. Williams, H.P.: Model Building in Mathematical Programming. Wiley, London (2007)

    Google Scholar 

  20. Wilson, I.D., Roach, P.A.: Container stowage planning: a methodology for generating computerised solutions. J. Oper. Res. Soc. 51(11), 1248–1255 (2000)

    Article  Google Scholar 

  21. Ziegler, G.M.: Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152. Springer, New York (1995). https://doi.org/10.1007/978-1-4613-8431-1

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank Stefan Røpke, Thomas Stidsen, and David Pisinger for discussions on applications of the FME framework beyond container vessel capacity models. This research is supported by the Danish Maritime Fund, Grant No. 2016-064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rune M. Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ajspur, M.L., Jensen, R.M., Andersen, K.H. (2019). A Decomposed Fourier-Motzkin Elimination Framework to Derive Vessel Capacity Models. In: Paternina-Arboleda, C., Voß, S. (eds) Computational Logistics. ICCL 2019. Lecture Notes in Computer Science(), vol 11756. Springer, Cham. https://doi.org/10.1007/978-3-030-31140-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31140-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31139-1

  • Online ISBN: 978-3-030-31140-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics