Skip to main content

Binary Quadratic Forms in Difference Sets

  • Conference paper
  • First Online:
Combinatorial and Additive Number Theory III (CANT 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 297))

  • 492 Accesses

Abstract

We show that if \(h(x,y)=ax^2+bxy+cy^2\in \mathbb {Z}[x,y]\) satisfies \(\varDelta (h)=b^2-4ac\ne 0,\) then any subset of \(\{1,2,\ldots ,N\}\) lacking nonzero differences in the image of h has size at most a constant depending on h times \(N\exp (-c\sqrt{\log N})\), where \(c=c(h)>0\). We achieve this goal by adapting an \(L^2\) density increment strategy previously used to establish analogous results for sums of one or more single-variable polynomials. Our exposition is thorough and self-contained, in order to serve as an accessible gateway for readers who are unfamiliar with previous implementations of these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Balog, J. Pelikán, J. Pintz, E. Szemerédi, Difference sets without \(\kappa \)-th powers, Acta. Math. Hungar. 65 (2) (1994), 165–187

    Google Scholar 

  2. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. d’Analyse Math, 71 (1977), 204–256

    Article  MathSciNet  Google Scholar 

  3. B. Green, On arithmetic structures in dense sets of integers, Duke Math. Jour. 114 (2002) no. 2, 215–238

    Article  MathSciNet  Google Scholar 

  4. B. Green, T. Tao, T. Ziegler, A Fourier-free proof of the Furstenberg-Sárközy theorem, https://terrytao.wordpress.com/2013/02/28/a-fourier-free-proof-of-the-furstenberg-sarkozy-theorem/

  5. M. Hamel, N. Lyall, A. Rice, Improved bounds on Sárközy’s theorem for quadratic polynomials, Int. Math. Res. Not. no. 8 (2013), 1761–1782

    Google Scholar 

  6. T. Kamae, M. Mendès France, van der Corput’s difference theorem, Israel J. Math. 31, no. 3–4, (1978), pp. 335–342

    Article  MathSciNet  Google Scholar 

  7. H.-Z. Li, H. Pan, Difference sets and polynomials of prime variables, Acta. Arith. 138, no. 1 (2009), 25–52

    Article  MathSciNet  Google Scholar 

  8. J. Lucier, Difference sets and shifted primes, Acta. Math. Hungar. 120 (2008), 79–102

    Article  MathSciNet  Google Scholar 

  9. J. Lucier, Intersective sets given by a polynomial, Acta Arith. 123 (2006), 57–95

    Article  MathSciNet  Google Scholar 

  10. N. Lyall, A new proof of Sárközy’s theorem, Proc. Amer. Math. Soc. 141 (2013), 2253–2264

    Article  MathSciNet  Google Scholar 

  11. N. Lyall, À. Magyar, Polynomial configurations in difference sets, J. Number Theory 129 (2009), 439–450

    Article  MathSciNet  Google Scholar 

  12. N. Lyall, A. Rice, Two theorems of Sárközy, http://alexricemath.com/wp-content/uploads/2013/06/DoubleSarkozy.pdf

  13. J. Pintz, W. L. Steiger, E. Szemerédi, On sets of natural numbers whose difference set contains no squares, J. London Math. Soc. 37 (1988), 219–231

    Article  MathSciNet  Google Scholar 

  14. K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), pp. 104–109

    Article  MathSciNet  Google Scholar 

  15. A. Rice, A maximal extension of the best-known bounds for the Sárközy-Furstenberg Theorem, Acta Arith. 187 (2019), 1–41

    Google Scholar 

  16. A. Rice, Improvements and extensions of two theorems of Sárközy, Ph.D. thesis, University of Georgia, 2012. http://alexricemath.com/wp-content/uploads/2013/06/AlexThesis.pdf

  17. A. Rice, Sárközy’s theorem for \({\cal{P}}\)-intersective polynomials, Acta Arith. 157 (2013), no. 1, 69–89

    Google Scholar 

  18. I. Ruzsa, Difference sets without squares, Period. Math. Hungar. 15 (1984), 205–209

    Article  MathSciNet  Google Scholar 

  19. I. Ruzsa, T. Sanders, Difference sets and the primes, Acta. Arith. 131, no. 3 (2008), 281–301

    Article  MathSciNet  Google Scholar 

  20. A. Sárközy, On difference sets of sequences of integers I, Acta. Math. Hungar. 31(1–2) (1978), 125–149

    Google Scholar 

  21. A. Sárközy, On difference sets of sequences of integers III, Acta. Math. Hungar. 31(3–4) (1978), 355–386

    Google Scholar 

  22. S. Slijepcević, A polynomial Sárközy-Furstenberg theorem with upper bounds, Acta Math. Hungar. 98 (2003), 275–280

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Neil Lyall who co-authored the expository note [12], in the context of squares and shifted primes, that served as a template for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Rice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rice, A. (2020). Binary Quadratic Forms in Difference Sets. In: Nathanson, M. (eds) Combinatorial and Additive Number Theory III. CANT 2018. Springer Proceedings in Mathematics & Statistics, vol 297. Springer, Cham. https://doi.org/10.1007/978-3-030-31106-3_14

Download citation

Publish with us

Policies and ethics