Skip to main content

Effectiveness of Color-Picking Interfaces Among Non-designers

  • Conference paper
  • First Online:
Cooperative Design, Visualization, and Engineering (CDVE 2019)

Abstract

There are relatively few studies on the effectiveness of color picking interface. This study therefore set out to measure both the efficiency in terms of task completion time and preference of four color-picking interfaces found in many design software applications including RGB, HSL, map and palette. A controlled experiment was conducted involving n = 16 participants without formal design training. The results show that the map and RGB interfaces were preferred by the participants while the palette interface resulted in the shortest task completion times. The HSL was the least favorable color picking interface for the given cohort of users. The results indicate that the palette, map and RGB color pickers found in entry level software probably are the most suitable for users without training in the use of colors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailey, P., Manktelow, K., Olomolaiye, P.: Examination of the color selection process within digital design for the built environment. In Proceedings of Theory and Practice of Computer Graphics, pp. 193–200. IEEE (2003)

    Google Scholar 

  2. Robertson, P.K.: Visualizing color gamuts: a user interface for the effective use of perceptual color spaces in data displays. IEEE Comput. Graphics Appl. 8(5), 50–64 (1988)

    Article  Google Scholar 

  3. Moretti, G., Lyons, P.: Tools for the selection of color palettes. In: Proceedings of the SIGCHI-NZ Symposium on Computer-Human Interaction, pp. 13–18. ACM (2002)

    Google Scholar 

  4. Meier, B.J., Spalter, A.M., Karelitz, D.B.: Interactive color palette tools. IEEE Comput. Graphics Appl. 24, 64–72 (2004)

    Article  Google Scholar 

  5. Gonzalez, B., Latulipe, C.: BiCEP: bimanual color exploration plugin. In: CHI 2011 Extended Abstracts on Human Factors in Computing Systems, pp. 1483–1488. ACM (2001)

    Google Scholar 

  6. van den Broek, E.L., Kisters, P.M.F., Vuurpijl, L.G.: Design guidelines for a content-based image retrieval color-selection interface. In: Dutch HCI 2004, pp. 14–18. ACM (2004)

    Google Scholar 

  7. Misue, K., Kitajima, H.: Design tool of color schemes on the CIELAB space. In 2016 20th International Conference Information Visualization, pp. 33–38. IEEE (2016)

    Google Scholar 

  8. Douglas, S.A., Kirkpatrick, A.E.: Model and representation: the effect of visual feedback on human performance in a color picker interface. ACM Trans. Graphics 18, 96–127 (1999)

    Article  Google Scholar 

  9. Jalal, G., Maudet, N., Mackay, W.E.: Color portraits: from color picking to interacting with color. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 4207–4216. ACM (2015)

    Google Scholar 

  10. Heer, J., Stone, M.: Color naming models for color selection, image editing and palette design. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1007–1016. ACM (2012)

    Google Scholar 

  11. Lynch, S., Haber, J., Carpendale, S.: Colorvis: Exploring color in digital images. Comput. Graphics 36(6), 696–707 (2012)

    Article  Google Scholar 

  12. Reinecke, K., Flatla, D.R., Brooks, C.: Enabling designers to foresee which colors users cannot see. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 2693–2704. ACM (2016)

    Google Scholar 

  13. Troiano, L., Birtolo, C., Miranda, M.: Adapting palettes to color vision deficiencies by genetic algorithm. In: Keijzer, M. (ed.) Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 1065–1072. ACM (2008)

    Google Scholar 

  14. Webster, M.: Integrating color usability components into design tools. Interactions 21, 56–61 (2014)

    Article  Google Scholar 

  15. Sandnes, F.E.: On-screen color contrast for visually impaired readers: selecting and exploring the limits of WCAG2.0 colors. In: Black, A., Lund, O., Walker, S. (eds.) Information Design: Research and Practice, pp. 405–416. Routledge, Abingdon (2016)

    Google Scholar 

  16. Sandnes, F.E., Zhao, A.: An interactive color picker that ensures WCAG2.0 compliant color contrast levels. Procedia-Comput. Sci. 67, 87–94 (2015)

    Article  Google Scholar 

  17. Sandnes, F.E., Zhao, A.: A contrast color selection scheme for WCAG2. 0-compliant web designs based on HSV-half-planes. In: Proceedings of SMC 2015, pp. 1233–1237. IEEE (2015)

    Google Scholar 

  18. Tigwell, G.W., Flatla, D.R., Archibald, N.D.: ACE: a color palette design tool for balancing aesthetics and accessibility. ACM Trans. Access. Comput. 9, 1–32 (2017)

    Article  Google Scholar 

  19. Sandnes, F.E.: An image-based visual strategy for working with color contrasts during design. In: Miesenberger, K., Kouroupetroglou, G. (eds.) ICCHP 2018. LNCS, vol. 10896, pp. 35–42. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94277-3_7

    Chapter  Google Scholar 

  20. Sandnes, F.E.: Understanding WCAG2.0 color contrast requirements through 3D color space visualization. Stud. Health Technol. Inform. 229, 366–375 (2016)

    Google Scholar 

  21. Bergman, L.D., Rogowitz, B.E., Treinish, L.A.: A rule-based tool for assisting colormap selection. In: Proceedings Visualization 1995, pp. 118–125. IEEE (1995)

    Google Scholar 

  22. Zhou, L., Hansen, C.D.: A survey of colormaps in visualization. IEEE Trans. Vis. Comput. Graphics 22(8), 2051–2069 (2016)

    Article  Google Scholar 

  23. Gramazio, C.C., Laidlaw, D.H., Schloss, K.B.: Colorgorical: Creating discriminable and preferable color palettes for information visualization. IEEE Trans. Vis. Comput. Graphics 23(1), 521–530 (2017)

    Article  Google Scholar 

  24. Wijffelaars, M., Vliegen, R., Van Wijk, J.J., Van Der Linden, E.J.: Generating color palettes using intuitive parameters. In: Computer Graphics Forum, vol. 27, no. 3, pp. 743–750. Blackwell Publishing Ltd, Oxford (2008)

    Article  Google Scholar 

  25. Wang, L., Giesen, J., McDonnell, K.T., Zolliker, P., Mueller, K.: Color design for illustrative visualization. IEEE Trans. Vis. Comput. Graphics 14(6), 1739–1754 (2008)

    Article  Google Scholar 

  26. Phan, H.Q., Fu, H., Chan, A.B.: Color orchestra: ordering color palettes for interpolation and prediction. IEEE Trans. Vis. Comput. Graphics 24(6), 1942–1955 (2018)

    Article  Google Scholar 

  27. Lin, S., Hanrahan, P.: Modeling how people extract color themes from images. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3101–3110. ACM (2013)

    Google Scholar 

  28. JASP Team: JASP (Version 0.9) [Computer software] (2018)

    Google Scholar 

  29. Robbins, N.B., Heiberger, R.M.: Plotting Likert and other rating scales. In: Proceedings of the 2011 Joint Statistical Meeting, pp. 1058–1066 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frode Eika Sandnes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brathovde, K., Farner, M.B., Brun, F.K., Sandnes, F.E. (2019). Effectiveness of Color-Picking Interfaces Among Non-designers. In: Luo, Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2019. Lecture Notes in Computer Science(), vol 11792. Springer, Cham. https://doi.org/10.1007/978-3-030-30949-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30949-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30948-0

  • Online ISBN: 978-3-030-30949-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics