Skip to main content

Two-Phase Bubble Flow: Experimental and Numerical Challenges

  • Conference paper
  • First Online:
INCREaSE 2019 (INCREaSE 2019)

Abstract

A water and air mixture model is validated via experimental data in a newly rebuild laboratory apparatus where the main variable compared was the pressure gradient along the pipe in a bubble flow pattern. The experimental apparatus presents a constant circular cross-section of 0.032 m of diameter and 3.815 m of length. The flow set-up was ascendant co-current and 30 pairs of superficial velocities of liquid-gas were measured. A numerical solution, using the mixture model, was implemented to predict the pressure gradient and void fraction of the two-phase flow for a one dimensional, steady-state, isothermal, no phase transition, no mass transfer and constant specific mass and viscosity conditions. The pressure gradient numerical results of the mixture model agreed with experimental data within an relative error envelope inferior to 2%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, F., Takahashi, M., Guo, L.: Pressure wave propagation in air-awater bubbly and slug flow. Prog. Nucl. Energy 47, 648–655 (2005)

    Article  Google Scholar 

  2. Hanafizadeh, P., Ghanbarzadeh, S., Saidi, M.H.: Visual technique for detection of gas-liquid two-phase flow regime in the airlift pump. J. Pet. Sci. Eng. 75, 327–335 (2011). Elsevier BV

    Article  Google Scholar 

  3. Kassab, S.Z., Kandil, H.A., Warda, H.A., Ahmed, W.H.: Air-lift pumps characteristics under two-phase flow conditions. Int. J. Heat Fluid Flow 30, 88–98 (2009)

    Article  Google Scholar 

  4. Schlegel, J., et al.: Void fraction and flow regime in adiabatic upward two-phase flow in large diameter vertical pipes. Nucl. Eng. Des. 239(12), 2864–2874 (2009). Elsevier BV

    Article  Google Scholar 

  5. Chalgeri, V.S., Jeong, J.H.: Flow patterns of vertically upward and downward air-water two-phase flow in a narrow rectangular channel. Int. J. Heat Mass Transf. 128, 934–953 (2019). Elsevier BV

    Article  Google Scholar 

  6. Szalinski, L., et al.: Comparative study of gas-oil and gas-water two-phase flow in a vertical pipe. Chem. Eng. Sci. 65(12), 3836–3848 (2010). Elsevier BV

    Article  Google Scholar 

  7. Xue, Y., et al.: Investigation on the void fraction of gas-liquid two-phase flows in vertically-downward pipes. Int. Commun. Heat Mass Transf. 77, 1–8 (2016). Elsevier BV

    Article  Google Scholar 

  8. Taitel, Y., Bornea, D., Dukler, A.E.: Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. AIChE J. 26, 345–354 (1980)

    Article  Google Scholar 

  9. Lima, L.E.M.: Análise do Modelo de Mistura Aplicado em Escoamentos Isotérmicos Gás-Líquido, Ph.D. thesis, Universidade Estadual de Campinas (2011)

    Google Scholar 

  10. Pauchon, C., et al.: Tacite: a transient tool for multiphase pipeline and well simulation. In: Society of Petroleum Engineers (1994)

    Google Scholar 

  11. Zuber, N., Findlay, J.A.: Average volumetric concentration in two-phase flow systems. J. Heat Transf. 87(4), 453–468 (1965)

    Article  Google Scholar 

  12. Wu, B., Firouzi, M., Mitchell, T., Rufford, T.E., Leonardi, C., Towler, B.: A critical review of flow maps for gas-liquid flows in vertical pipes and annuli. Chem Eng J. 326, 350–377 (2017). https://doi.org/10.1016/j.cej.2017.05.135

    Article  Google Scholar 

  13. Nicklin, D.J.: Two-phase bubble flow. Chem. Eng. Sci. 17(9), 693–702 (1962). ISSN 0009-2509

    Article  Google Scholar 

  14. Ishii, M.: Thermo-Fluid Dynamic Theory of Two-Phase Flow. Eyrolles, Paris, France: [s.n.]. Collection de la Direction des Etudes et Recherches d’Electricite de France (1975)

    Google Scholar 

  15. Dukler, A.E., Wicks, M., Cleveland, R.G.: Frictional pressure drop in 2-phase flow: B. An approach through similarity analysis. AIChE J. 10(1), 44–51 (1964). ISSN 0001-1541

    Article  Google Scholar 

  16. Wallis, G.B.: One-Dimensional Two-Phase Flow. McGraw-Hill Book, New York (1969). [S.l.]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gláucio Kenji Matoba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matoba, G.K., Ribeiro, L.F., Garcia, V., Suguimoto, F.K. (2020). Two-Phase Bubble Flow: Experimental and Numerical Challenges. In: Monteiro, J., et al. INCREaSE 2019. INCREaSE 2019. Springer, Cham. https://doi.org/10.1007/978-3-030-30938-1_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30938-1_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30937-4

  • Online ISBN: 978-3-030-30938-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics