Skip to main content

Manufacturing Process and Thermal Stability of Nanophotonic Soft Contact Lenses

  • Conference paper
  • First Online:
Computational and Experimental Approaches in Materials Science and Engineering (CNNTech 2018)

Abstract

Hydrogels have peculiar physical and chemical properties and therefore, are used in a variety of biomedical applications including drug delivery agents, prosthetic devices, the repair and replacement of soft tissues, contact lenses, etc. Consequently, investigation of mechanical, physical and chemical properties is crucial in biomedical application of hydrogels. Poly (2-hydroxyethyl methacrylate) (pHEMA), as a biocompatible hydrogel, was first hydrogel used for making soft contact lenses. Many researches have been modified pHEMA with the aim of improving its properties. Application of nanotechnology is one of the possible solutions for improving the characteristics of this biocompatible hydrogel. In this paper, polyhydroxyethyl methacrylate was used as standard material for soft contact lenses (SL 38). This material was incorporated with fullerene C60 (SL38-A), fullerol C60(OH)24 (SL 38-B) and fullerene metformin hydroxylate C60(OH)12(OC4N5H10)12 (SL 38-C), respectively. Three new nanophotonic soft contact lenses were made. The main goal of this research was to develop appropriate process parameters for soft contact lens micro-turning. Also, studying the thermal decomposition of standard soft contact lens, pHEMA, as well as three new nanophotonic soft contact lenses was one of the main objectives. Results have shown that manufacturing process of nanofotonic soft contact lens is considered to be a micro-turning process regarding the cutting depth and tool nose ratio. Thermal stability of all three nanofotonic soft contact lenses was significantly improved comparing to the standard soft contact lens. Still, further research needs to be done so these nonophotonic soft contact lenses could find practical application in the field of biomedical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ketelson, H.A., Meadows, D.L., Stone, R.P.: Dynamic wettability properties of a soft contact lens hydrogel. Colloids Surf. B 40, 1–9 (2005)

    Article  Google Scholar 

  2. Peppas, N.A., Huang, Y., Torres-Lugo, M., Ward, J.H., Zhang, J.: Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu. Rev. Biomed. Eng. 2, 9–29 (2000)

    Article  Google Scholar 

  3. Peppas, N.A., Bures, P., Leobandung, W., Ichikawa, H.: Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50, 27–46 (2000)

    Article  Google Scholar 

  4. Tranoudis, I., Efron, N.: Water properties of soft contact lens materials. Eye Contact Lens 27, 193–208 (2004)

    Article  Google Scholar 

  5. Mitrović, A., Munćan, J., Hut, I., Pelemiš, S., Čolić, K., Matija, L.: Polymeric biomaterials based on polylactide, chitosan and hydrogels in medicine, biomaterials in clinical practice. In: Advances in Clinical Research and Medical Devices, pp. 119–147. Springer, Heidelberg (2017)

    Google Scholar 

  6. Kalagasidis Krušić, M., Milosavljević, N., Debeljković, A. (Mitrović, A.). Üzüm, Ö.B., Karadağ, E.: Removal of Pb2 + ions from water by poly (acrlymide-co-sodium methacrylate) hydrogels. Water Air Soil Poll. 223, 4355–4368 (2012)

    Google Scholar 

  7. Milosavljević, N., Debeljković, A. (Mitrović, A.), Kalagasidis Krušić, M., Milašinović, N., Üzüm, Ö.B., Karadağ, E.: Application of poly(acrlymide-co-sodium methacrylate) hydrogels in copper and cadmium removal from aqueous solution. Environ. Prog. Sustain. Energy 33, 824–834 (2014)

    Article  Google Scholar 

  8. Baker, M.V., Brown, D.H., Casadio, Y.S., Chirila, T.V.: The preparation of poly(2-hydroxyethyl methacrylate) and poly{(2-hydroxyethyl methacrylate)-co-[poly(ethylene glycol) methyl ether methacrylate]} by photoinitiated polymerization-induced phase separation in water. Polymer 50, 5918–5927 (2009)

    Article  Google Scholar 

  9. Debeljković, A.D. (Mitrović, A.D.), Matija, L.R., Koruga, Đ.L.J.: Characterization of nanophotonic soft contact lenses based on poly (2-hydroxyethyl methacrylate) and fullerene. Hemijska industrija 67, 861–870 (2013)

    Article  Google Scholar 

  10. Mitrovic, A., Bojovic, B., Stamenkovic, D., Popovic, D.: Characterization of surface roughness of new nanophotonic soft contact lenses using lacunarity and AFM method. Hemijska industrija, 2406–0895 (2018)

    Google Scholar 

  11. Debeljković, A. (Mitrović, A.), Veljić, V., Šijacki – Žeravčić, V., Matija, L., Koruga, Đ.: Characterization of materials for commercial and new nanophotonic soft contact lenses by Optomagnetic Spectroscopy. FME Trans. 42, 89–93 (2014)

    Article  Google Scholar 

  12. Mitrović, A.D., Stamenković, D., Conte, M., Mihajlović, S.: Study of the optical power of nanophotonic soft contact lenses based on poly (2-hydroxyethyl methacrylate) and fullerene. Contemp. Mater. V-1, 151–160 (2014)

    Google Scholar 

  13. Mitrović, A.D., Miljković, V.M., Popović, D.P., Koruga, Đ.: Mechanical properties of nanophotonic soft contact lenses based on poly (2-hydrohzethil methacrylate) and fullerenes. Struct. Integrity Life 16, 39–42 (2016)

    Google Scholar 

  14. Miljković, V.M., Mitrović, A.D., Stamenković, D., Popović, D.P., Koruga, Đ.: Monte carlo simulation of light transport through lens. Struct. Integrity Life 16–1, 125–130 (2016)

    Google Scholar 

  15. Stamenković, D., Kojić, D., Matija, L., Miljković, Z., Babić, B.: Physical properties of contact lenses characterized by scanning probe microscopy and optomagnetic fingerprint. Int. J. Mod. Phys. B 24, 825–834 (2010)

    Article  Google Scholar 

  16. Tomic, M., Bojovic, B., Stamenkovic, D., Mileusnic, I., Koruga, D.: Lacunarity properties of nanophotonic materials based on poly(methyl methacrylate) for contact lenses. Mater. Technol. 51, 145–151 (2017)

    Google Scholar 

  17. Kaifeng, L., Timothy, C.O.: Poro-viscoelastic constitutive modeling of unconfined creep of hydrogels using finite element analysis with integrated optimization method. J. Mech. Behav. Biomed. Mater. 4, 440–450 (2011)

    Article  Google Scholar 

  18. Tomic, S.Lj., Micic, M.M., Dobic, S.N., Filipovic, J.M., Suljovrujic, E.H.: Smart poly(2-hydroxyethylmethacrylate/itaconicacid)hydrogelsfor biomedical application. Radiat. Phys. Chem. 79, 643–649 (2010)

    Google Scholar 

  19. Koetting, M.C., Peters, J.T., Steichen, S.D., Peppas, N.A.: Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater. Sci. Eng. R. 93, 1–49 (2015)

    Article  Google Scholar 

  20. Enas, M.A.: Hydrogel: Preparation, characterization, and applications: a review. JAR. 6, 105–121 (2015)

    Article  Google Scholar 

  21. Brannon-Peppas, L., Harland, R.S.: Preparation and characterization of cross linked hydrophilic networks. In: Absorbent Polymer Technology, pp. 45–66. Elsevier, Amsterdam, (1990)

    Chapter  Google Scholar 

  22. Gupta, P., Vermani, K., Garg, S.: Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today 7, 569–579 (2002)

    Article  Google Scholar 

  23. Davis, K.A., Anseth, K.S.: Controlled release from cross linked degradable networks. Crit. Rev. Ther. Drug Carrier Syst. 19, 385–423 (2002)

    Article  Google Scholar 

  24. Safrany, A.: Radiation processing: synthesis and modification of biomaterials for medical use. Nucl. Instrum. Meth. Phys. Res. Sect. B-Beam Interact. Mater. Atoms 131, 376–381 (1997)

    Article  Google Scholar 

  25. Rosiak, J.M., Yoshii, F.: Hydrogels and their medical applications. Nucl. Instrum. Meth. Phys. Res. Sect. B-Beam Interact. Mater. Atoms 151, 56–64 (1999)

    Article  Google Scholar 

  26. Opdahl, A., Kim, S.H., Koffas, T.S., Marmo, C., Somorjai, G.A.: Surface mechanical properties of PHEMA contact lenses: viscoelastic and adhesive property changes on exposure to controlled humidity. J. Biomed. Mater. Res., Part A 67, 350–356 (2003)

    Article  Google Scholar 

  27. Kim, S.H., Opdahl, A., Marmo, C., Somorjai, G.A.: AFM and SFG studies of PHEMA-based hydrogel contact lens surfaces in saline solution: adhesion, friction, and the presence of non-crosslinked polymer chains at the surface. Biomaterials 23, 1657–1666 (2002)

    Article  Google Scholar 

  28. Xiang, Y., Chen, D.: Preparation of a novel pH responsive silver nanoparticle/poly (HEMA–PEGMA–MAA) composite hydrogel. Eur. Polymer J. 43, 4178–4187 (2007)

    Article  Google Scholar 

  29. Nichols, J.: Contact Lenses 2017. Contact Lens Spectrum, 20–25 (2018)

    Google Scholar 

  30. Bui, T.H., Cavanagh, H.D., Robertson, D.M.: Patient compliance during contact lens wear: perceptions, awareness, and behavior. Eye Contact Lens 36, 334–339 (2010)

    Article  Google Scholar 

  31. Kirchhof, S., Goepferich, A.M., Brandl, F.P.: Hydrogels in ophthalmic applications. Eur. J. Pharm. Biopharm. 95, 227–238 (2015)

    Article  Google Scholar 

  32. Seo, E., Kumar, S., Lee, J., Jang, J., Park, J.H., Chang, M.C., Kwon, I., Lee, J.S., Huh, Y.: Modified hydrogels based on poly (2-hydroxyethyl methacrylate) (pHEMA) with higher surface wettability and mechanical properties. Macromol. Res. 25, 704–711 (2017)

    Article  Google Scholar 

  33. Tranoudis, I., Efron, N.: Parameter stability of soft contact lenses made from different materials. Contact Lens Anterior Eye 27, 115–131 (2004)

    Article  Google Scholar 

  34. Shaynai-Rad, M., Khameneh, M., Mohajeri, S.A., Fazly Bazzaz, B.S.: Antibacterial activity of silver nanoparticle-loaded soft contact lens materials: the effect of monomer composition. Curr. Eye Res. 41, 1286–1293 (2016)

    Article  Google Scholar 

  35. Jung, H.J., Chauhan, A.: Temperature sensitive contact lenses for triggered ophthalmic drug delivery. Biomaterials 33, 2289–2300 (2012)

    Article  Google Scholar 

  36. Kumar, A.P., Depan, D., Tomer, N.S., Singh, R.P.: Nanoscale Particles for polymer degradation and stabilization—Trends and future perspectives. Prog. Polym. Sci. 34, 479–515 (2009)

    Article  Google Scholar 

  37. Giacalone, F., Martýn, N.: Fullerene polymers: synthesis and properties. Chem. Rev. 106, 5136–5190 (2006)

    Article  Google Scholar 

  38. Ahmed, R.M., El-Bashir, S.M.: Structure and physical properties of polymer composite films doped with fullerene nanoparticles. Int. J. Photoenergy 2011, 1–6 (2011)

    Article  Google Scholar 

  39. Riggs, J.E., Sun, Y.P.: Optical limiting properties of (60) fullerene and methano (60) fullerene derivative in solution versus in polymer matrix. J. Phys. Chem. A 103, 485–495 (1999)

    Article  Google Scholar 

  40. Peng, N., Leung, F.S.M.: Novel fullerene materials with unique optical transmission characteristics. Chem. Mater. 16, 4790–4798 (2004)

    Article  Google Scholar 

  41. Maldonado-Codina, C., Efron, N.: Impact of manufacturing technology and material composition on the mechanical properties of hydrogel contact lenses. Ophthalmic Physiol. Opt. 24, 551–561 (2004)

    Article  Google Scholar 

  42. Fang, F., Xu, F.: Recent advances in micro/nano-cutting: effect of tool edge and material properties. Nanomanuf. Metrol. 1, 4–31 (2018)

    Article  Google Scholar 

  43. Fang, F.Z., Zhang, X.D., Gao, W., Guo, Y.B., Byrne, G., Hansen, H.N.: Nano manufacturing—perspective and applications. CIRP Ann. Manuf. Technol. 66, 683–705 (2017)

    Article  Google Scholar 

  44. Zhu, L., Li, Z., Fang, F., Huang, S., Zhang, X.: Review on fast tool servo machining of optical freeform surfaces. Int. J. Adv. Manuf. Technol. 95, 2071–2092 (2018)

    Article  Google Scholar 

  45. Kang, C., Fang, F.: State of the art of bio implants manufacturing: part II. Adv. Manuf. 6, 137–154 (2018)

    Article  Google Scholar 

  46. Stephen, S., Musgrave, A., Fang, F.: Contact lens materials: a materials science perspective. Materials 12, 261 (2019)

    Article  Google Scholar 

  47. Martınez, G., Sanchez-Chaves, M., Marco Rocha, C., Ellis, G.: Thermal degradation behavior of 2-hydroxyethylmethacrylate–tert-butyl acrylate copolymers. Polym. Degrad. Stab. 76, 205–210 (2002)

    Article  Google Scholar 

  48. Laftah, W., Akos, N.I., Hashim, S.: Polymer hydrogels: a review. Polymer-plastics Technol. Eng. 50, 1475–1486 (2011)

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Optix (Belgrade, Serbia) for providing the material used in this study. This research was supported by Ministry of Education, Science and Technological Development of Republic of Serbia under Projects III45009 and TR35031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Mitrovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mitrovic, A., Stamenkovic, D., Popovic, D., Dragicevic, A. (2020). Manufacturing Process and Thermal Stability of Nanophotonic Soft Contact Lenses. In: Mitrovic, N., Milosevic, M., Mladenovic, G. (eds) Computational and Experimental Approaches in Materials Science and Engineering. CNNTech 2018. Lecture Notes in Networks and Systems, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-030-30853-7_11

Download citation

Publish with us

Policies and ethics