Skip to main content

Cyclewidth and the Grid Theorem for Perfect Matching Width of Bipartite Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11789))

Included in the following conference series:

Abstract

A connected graph G is called matching covered if every edge of G is contained in a perfect matching. Perfect matching width is a width parameter for matching covered graphs based on a branch decomposition. It was introduced by Norine and intended as a tool for the structural study of matching covered graphs, especially in the context of Pfaffian orientations. Norine conjectured that graphs of high perfect matching width contain a large grid as a matching minor, similar to the result on treewidth by Robertson and Seymour.

In this paper we obtain the first results on perfect matching width since its introduction. For the restricted case of bipartite graphs, we show that perfect matching width is equivalent to directed treewidth and thus, the Directed Grid Theorem by Kawarabayashi and Kreutzer for directed treewidth implies Norine’s conjecture.

This work has been supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC consolidator grant DISTRUCT, agreement No. 648527).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, I.: Directed tree-width examples. J. Comb. Theory Ser. B 97(5), 718–725 (2007)

    Article  MathSciNet  Google Scholar 

  2. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MathSciNet  Google Scholar 

  3. Bodlaender, H.L.: Treewidth: algorithmic techniques and results. In: Prívara, I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 19–36. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0029946

    Chapter  Google Scholar 

  4. Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30577-4_1

    Chapter  Google Scholar 

  5. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity, 1st edn. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

    Book  MATH  Google Scholar 

  6. Diestel, R.: Graph Theory, vol. 173. Springer, Heidelberg (2017)

    Book  Google Scholar 

  7. Guenin, B., Thomas, R.: Packing directed circuits exactly. Combinatorica 31(4), 397–421 (2011)

    Article  MathSciNet  Google Scholar 

  8. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. J. Comb. Theory Ser. B 82(1), 138–154 (2001)

    Article  MathSciNet  Google Scholar 

  9. Jeong, J., Sæther, S.H., Telle, J.A.: Maximum matching width: new characterizations and a fast algorithm for dominating set. Discrete Appl. Math. 248, 114–124 (2017)

    Article  MathSciNet  Google Scholar 

  10. Kawarabayashi, K., Kreutzer, S.: The directed grid theorem. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, pp. 655–664 (2015)

    Google Scholar 

  11. Kotzig, A.: On the theory of finite graphs with a linear factor I–III [Slovak with German summary]. Fyz. Casopis Slovensk. Akad. Vied, 9–10 (1959/1960)

    Google Scholar 

  12. Lovász, L.: Matching structure and the matching lattice. J. Comb. Theory Ser. B 43(2), 187–222 (1987)

    Article  MathSciNet  Google Scholar 

  13. Lovász, L., Plummer, M.D.: Matching Theory, vol. 367. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  14. McCuaig, W.: Even dicycles. J. Graph Theory 35(1), 46–68 (2000)

    Article  MathSciNet  Google Scholar 

  15. McCuaig, W.: Brace generation. J. Graph Theory 38(3), 124–169 (2001)

    Article  MathSciNet  Google Scholar 

  16. McCuaig, W.: Pólya’s permanent problem. Electron. J. Comb. 11(1), 79 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Norine, S.: Matching structure and Pfaffian orientations of graphs. Ph.D. thesis. Georgia Institute of Technology (2005)

    Google Scholar 

  18. Norine, S., Thomas, R.: Generating bricks. J. Comb. Theory Ser. B 97(5), 769–817 (2007)

    Article  MathSciNet  Google Scholar 

  19. Reed, B.: Introducing directed tree width. Electron. Notes Discrete Math. 3, 222–229 (1999)

    Article  MathSciNet  Google Scholar 

  20. Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. J. Comb. Theory Ser. B 41(1), 92–114 (1986)

    Article  MathSciNet  Google Scholar 

  21. Robertson, N., Seymour, P.D.: Graph minors I–XXIII. J. Comb. Theory Ser. B (1982–2010)

    Google Scholar 

  22. Robertson, N., Seymour, P.D., Thomas, R.: Permanents, Pfaffian orientations, and even directed circuits. Ann. Math. 150(3), 929–975 (1999)

    Article  MathSciNet  Google Scholar 

  23. Thomas, R.: A survey of Pfaffian orientations of graphs. In: Proceedings of the International Congress of Mathematicians, vol. 3, pp. 963–984. Citeseer (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meike Hatzel or Sebastian Wiederrecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hatzel, M., Rabinovich, R., Wiederrecht, S. (2019). Cyclewidth and the Grid Theorem for Perfect Matching Width of Bipartite Graphs. In: Sau, I., Thilikos, D. (eds) Graph-Theoretic Concepts in Computer Science. WG 2019. Lecture Notes in Computer Science(), vol 11789. Springer, Cham. https://doi.org/10.1007/978-3-030-30786-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30786-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30785-1

  • Online ISBN: 978-3-030-30786-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics