Skip to main content

Lymphohematopoietic Malignancies

  • Chapter
  • First Online:
Occupational Cancers

Abstract

In this chapter, we present the 2017 revised WHO classification as the current reference standard for lymphohematopoietic malignancies. According to this, we discuss in detail the subgroups of myeloid and lymphoid malignancies, characterizing their biological and clinical features. Then, based on the current list of putative carcinogens maintained by the International Agency for Research on Cancer (updated to November 2018), we describe the possible occupational risk factors for myeloid and lymphoid malignancies. In particular, we focus on ionizing radiations (including fission products, phosphorus-32, strontium-90, thorium-232, and its decay products), benzene, 1,3-butadiene, formaldehyde, two pesticides (lindane and pentachlorophenol), and a generically identified industrial process (rubber production industry). As reviewed in the chapter, the case definitions adopted in epidemiological studies seldom met the classification criteria established by WHO. Hence, knowledge on putative risk factors for lymphohematopoietic malignancies is limited to major groupings, such as non-Hodgkin lymphoma, chronic lymphoid leukemia. Future researches should be oriented to study specific diseases and based on case definitions derived by systematic classifications of lymphohematopoietic malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Cancer Society. Cancer facts and figures. Atlanta: American Cancer Society; 2018. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2018.html.

    Google Scholar 

  2. National Cancer Institute. Surveillance, epidemiology, and end results (SEER) program. Bethesda, MD: NCI; 2019. https://seer.cancer.gov/.

    Google Scholar 

  3. GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1151–210.

    Article  Google Scholar 

  4. Eaves CJ. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood. 2015;125:2605–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jaffe ES, Barr PM, Smith SM. Understanding the new WHO classification of lymphoid malignancies: why it’s important and how it will affect practice. Am Soc Clin Oncol Educ Book. 2017;37:535–46.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    Article  CAS  PubMed  Google Scholar 

  7. Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th Revised ed. Lyon: IARC; 2017.

    Google Scholar 

  8. Greenberg PL, Tuechler H, Schanz J, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373:1136–52.

    Article  PubMed  CAS  Google Scholar 

  10. Bennett JM, Catovsky D, Daniel MT, et al. Proposal for the classification of the acute leukemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33:451–8.

    Article  CAS  PubMed  Google Scholar 

  11. Harris NL, Jaffe ES, stein H, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma study group. Blood. 1994;84:1361–92.

    Article  CAS  PubMed  Google Scholar 

  12. International Agency for Research on Cancer. List of classifications by cancer sites with sufficient or limited evidence in humans, vol. 1–123. Lyon: IARC; 2018. https://monographs.iarc.fr/wp-content/uploads/2018/07/Table4.pdf.

    Google Scholar 

  13. '’t Mannetje A, De Roos AJ, Boffetta P, et al. Occupation and risk of non-Hodgkin lymphoma and its subtypes: a pooled analysis from the InterLymph consortium. Environ Health Perspect 2016;124:396–405.

    Article  PubMed  Google Scholar 

  14. International Agency for Research on Cancer. 1,3-Butadiene. In: IARC monographs on the evaluation of carcinogenic risks to humans volume 100. A review of human carcinogens part F: chemical agents and related occupations. Lyon: IARC; 2012. p. 309–38.

    Google Scholar 

  15. Rothman KJ, Greenland S, Lash TL. Modern epidemiology, vol. 3. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  16. Committee on the Biological Effects of Ionizing Radiations, Board on Radiation Effects Research, Commission on Life Sciences, National Research Council. Health effects of exposure to low levels of ionizing radiation—Beir V. Washington, DC: National Academy Press; 1996.

    Google Scholar 

  17. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, Board on Radiation Effects Research, Division on Earth and Life Studies. Health risks from exposure to low levels of ionizing radiation: BEIR VII, phase 2. Washington, DC: The National Academies Press; 2006.

    Google Scholar 

  18. Zablotska LB, Fenske N, Schnelzer M, Zhivin S, Laurier D, Kreuzer M. Analysis of mortality in a pooled cohort of Canadian and German uranium processing workers with no mining experience. Int Arch Occup Environ Health. 2018;91:91–103.

    Article  CAS  PubMed  Google Scholar 

  19. Laurier D, Richardson DB, Cardis E, et al. The international nuclear workers study (INWorkS): a collaborative epidemiological study to improve knowledge about health effects of protracted low-dose exposure. Radiat Prot Dosimetry. 2017;173:21–5.

    Article  PubMed  Google Scholar 

  20. Kreuzer M, Sobotzki C, Fenske N, Marsh JW, Schnelzer M. Leukaemia mortality and low-dose ionising radiation in the WISMUT uranium miner cohort (1946-2013). Occup Environ Med. 2017;74:252–8.

    Article  PubMed  Google Scholar 

  21. Richardson DB, Cardis E, Daniels RD, et al. Risk of cancer from occupational exposure to ionising radiation: retrospective cohort study of workers in France, the United Kingdom, and the United States (INWorkS). BMJ. 2015;351:h5359.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Leuraud K, Richardson DB, Cardis E, et al. Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study. Lancet Haematol. 2015;2:e276–81.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schubauer-Berigan MK, Daniels RD, Bertke SJ, Tseng CY, Richardson DB. Cancer mortality through 2005 among a pooled cohort of U.S. nuclear workers exposed to external ionizing radiation. Radiat Res. 2015;183:620–31.

    Article  CAS  PubMed  Google Scholar 

  24. Merzenich H, Hammer GP, Tröltzsch K, et al. Mortality risk in a historical cohort of nuclear power plant workers in Germany: results from a second follow-up. Radiat Environ Biophys. 2014;53:405–16.

    Article  PubMed  Google Scholar 

  25. Metz-Flamant C, Laurent O, Samson E, et al. Mortality associated with chronic external radiation exposure in the French combined cohort of nuclear workers. Occup Environ Med. 2013;70:630–8.

    Article  CAS  PubMed  Google Scholar 

  26. Agency for Toxic Substances and Disease Registry. Toxic substances portal—ionizing radiation. Atlanta, GA: ATSDR; 1999. https://www.atsdr.cdc.gov/phs/phs.asp?id=482&tid=86#bookmark02.

    Google Scholar 

  27. Benzene: 2018 World Market Outlook and Forecast up to 2022. Merchant Research and Consulting Ltd. January 2018.

    Google Scholar 

  28. Boardman WW. Benzene treatment of leukemia. Cal State J Med. 1915;13:348–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rhomberg L, Goodman J, Tao G, Zu K, Chandalia J, Williams PR, Allen B. Evaluation of acute nonlymphocytic Leukemia and its subtypes with benzene exposure and mortality estimates: a lifetable analysis of the Pliofilm cohort. J Occup Environ Med. 2016;58:414–20.

    Article  CAS  PubMed  Google Scholar 

  30. Crump KS. Risk of benzene-induced leukemia predicted from the Pliofilm cohort. Environ Health Perspect. 1996;104(Suppl 6):1437–41.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Paxton MB. Leukemia risk associated with benzene exposure in the Pliofilm cohort. Environ Health Perspect. 1996;104(Suppl 6):1431–6.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Crump KS. Risk of benzene-induced leukemia: a sensitivity analysis of the pliofilm cohort with additional follow-up and new exposure estimates. J Toxicol Environ Health. 1994;42:219–42.

    Article  CAS  PubMed  Google Scholar 

  33. Paxton MB, Chinchilli VM, Brett SM, Rodricks JV. Leukemia risk associated with benzene exposure in the pliofilm cohort. II. Risk estimates. Risk Anal. 1994;14:155–61.

    Article  CAS  PubMed  Google Scholar 

  34. International Agency for Research on Cancer. Benzene. In: IARC monographs on the evaluation of carcinogenic risks to humans, vol. 120. Lyon: IARC; 2018.

    Google Scholar 

  35. Steensma DP, Tefferi A. The myelodysplastic syndrome(s): a perspective and review highlighting current controversies. Leuk Res. 2003;27:95–120.

    Article  PubMed  Google Scholar 

  36. Li W, Schnatter AR. Benzene risk assessment: does new evidence on myelodysplastic syndrome justify a new approach? Crit Rev Toxicol. 2018;48:417–32.

    Article  CAS  PubMed  Google Scholar 

  37. Agency EC. Committee for risk assessment RAC opinion on scientific evaluation of occupational exposure limits for benzene (ECHA/RAC/ O-000000-1412-86-187/F). Helsinki: ECHA; 2018. https://echa.europa.eu/documents/10162/13641/benzene_opinion_en.pdf/4fec9aac-9ed5-2aae-7b70-5226705358c7.

    Google Scholar 

  38. Butadiene (BD): 2018 World market outlook and forecast up to 2027. Merchant Research and Consulting Ltd. January 2018.

    Google Scholar 

  39. Dollard GJ, Dumitrean P, Telling S, Dixon J, Derwent RG. Observed trends in ambient concentrations of C2-C8 hydrocarbons in the United Kingdom over the period 1993 to 2004. Atmos Environ. 2007;41:2559–69.

    Article  CAS  Google Scholar 

  40. International Agency for Research on Cancer. 1,3-Butadiene. In: IARC monographs on the evaluation of carcinogenic risks to humans, Vol. 97. 1,3-butadiene, ethylene oxide and vinyl halides (vinyl fluoride, vinyl chloride and vinyl bromide). Lyon: IARC; 2008. p. 45–184.

    Google Scholar 

  41. American Conference of Governmental Industrial Hygienists. 2019 TLVs and BEIs. Cincinnati, OH: ACGIH; 2019.

    Google Scholar 

  42. European parliament and Council. Directive (Eu) 2019/130 of the European Parliament and of the Council of 16 January 2019 amending Directive 2004/37/EC on the protection of workers from the risks related to exposure to carcinogens or mutagens at work. Brussels: European Union; 2019.

    Google Scholar 

  43. Scientific Committee on Occupational Exposure Limits. Recommendation from the scientific committee on occupational exposure limits: risk assessment for 1,3-butadiene. Brussels: SCOEL; 2007. ec.europa.eu/social/BlobServlet?docId=3855&langId=en.

    Google Scholar 

  44. Sielken RL Jr, Valdez-Flores C. A comprehensive review of occupational and general population cancer risk: 1,3-butadiene exposure-response modeling for all leukemia, acute myelogenous leukemia, chronic lymphocytic leukemia, chronic myelogenous leukemia, myeloid neoplasm and lymphoid neoplasm. Chem Biol Interact. 2015;241:50–8.

    Article  CAS  PubMed  Google Scholar 

  45. Formaldehyde: 2018 World Market Outlook and Forecast up to 2027. Merchant Research and Consulting Ltd. January 2018.

    Google Scholar 

  46. World Health Organization. WHO guidelines for indoor air quality: selected pollutants. Geneva: WHO; 2010.

    Google Scholar 

  47. International Agency for Research on Cancer. Formaldehyde. In: IARC monographs on the evaluation of carcinogenic risk of chemical to humans, Vol.29. Some industrial chemicals and dyestuffs. Lyon: IARC; 1982. p. 345–89.

    Google Scholar 

  48. International Agency for Research on Cancer. Formaldehyde. In: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Suppl.7. Overall evaluations of carcinogenicity: an updating of IARC monographs, vol. 1–42. Lyon: IARC; 1987. p. 211–6.

    Google Scholar 

  49. International Agency for Research on Cancer. Formaldehyde. In: IARC monographs on the evaluation of carcinogenic risks to humans. Wood dust and formaldehyde, vol. 62. IARC: Lyon; 1995. p. 217–362.

    Google Scholar 

  50. International Agency for Research on Cancer. Formaldehyde. In: IARC monographs on the evaluation of carcinogenic risks to humans. Formaldehyde, 2-butoxyethanol and 1-tertbutoxypropan-ol, vol. 88. IARC: Lyon; 2006. p. 39–325.

    Google Scholar 

  51. International Agency for Research on Cancer. Formaldehyde. In: IARC monographs on the evaluation of carcinogenic risks to humans volume 100. A review of human carcinogens part F: chemical agents and related occupations. Lyon: IARC; 2012. p. 401–36.

    Google Scholar 

  52. Beane Freeman LE, Blair A, Lubin JH, Set a. Mortality from lymphohematopoietic malignancies among workers in formaldehyde industries: the National Cancer Institute cohort. J Natl Cancer Inst. 2009;101:751–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hauptmann M, Stewart PA, Lubin JH, et al. Mortality from lymphohematopoietic malignancies and brain cancer among embalmers exposed to formaldehyde. J Natl Cancer Inst. 2009;101:1696–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bosetti C, McLaughlin JK, Tarone RE, Pira E, La Vecchia C. Formaldehyde and cancer risk: a quantitative review of cohort studies through 2006. Ann Oncol. 2008;19:29–43.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang L, Steinmaus C, Eastmond DA, Xin XK, Smith MT. Formaldehyde exposure and leukemia: a new meta-analysis and potential mechanisms. Mutat Res. 2009;681:150–68.

    Article  CAS  PubMed  Google Scholar 

  56. Bachand AM, Mundt KA, Mundt DJ, Montgomery RR. Epidemiological studies of formaldehyde exposure and risk of leukemia and nasopharyngeal cancer: a meta-analysis. Crit Rev Toxicol. 2010;40:85–100.

    Article  CAS  PubMed  Google Scholar 

  57. Meyers AR, Pinkerton LE, Hein MJ. Cohort mortality study of garment industry workers exposed to formaldehyde: update and internal comparisons. Am J Ind Med. 2013;56:1027–39.

    Article  CAS  PubMed  Google Scholar 

  58. Coggon D, Ntani G, Harris EC, Palmer KT. Upper airway cancer, myeloid leukemia, and other cancers in a cohort of British chemical workers exposed to formaldehyde. Am J Epidemiol. 2014;179:1301–11.

    Article  PubMed  Google Scholar 

  59. Talibov M, Lehtinen-Jacks S, et al. Occupational exposure to solvents and acute myeloid leukemia: a population-based, case-control study in four Nordic countries. Scand J Work Environ Health. 2014;40:511–7.

    Article  CAS  PubMed  Google Scholar 

  60. Pira E, Romano C, Verga F, La Vecchia C. Mortality from lymphohematopoietic neoplasms and other causes in a cohort of laminated plastic workers exposed to formaldehyde. Cancer Causes Control. 2014;25:1343–9.

    Article  PubMed  Google Scholar 

  61. Sernia S, Di Folco F, Altrudo P, et al. Risk of nasopharyngeal cancer. Leukemia and other tumors in a cohort of employees and students potentially exposed to (FA) formaldehyde in university laboratories. Clin Ter. 2016;167:43–7.

    CAS  PubMed  Google Scholar 

  62. Saberi Hosnijeh F, Christopher Y, Peeters P, et al. Occupation and risk of lymphoid and myeloid leukaemia in the European Prospective Investigation into Cancer and Nutrition (EPIC). Occup Environ Med. 2013;70:464–70.

    Article  PubMed  Google Scholar 

  63. Mundt KA, Gentry PR, Dell LD, Rodricks JV, Boffetta P. Six years after the NRC review of EPA’s draft IRIS toxicological review of formaldehyde: regulatory implications of new science in evaluating formaldehyde leukemogenicity. Regul Toxicol Pharmacol. 2018;92:472–90.

    Article  CAS  PubMed  Google Scholar 

  64. Morgan DL, Dixon D, King DH, et al. NTP research report on absence of formaldehyde-induced neoplasia in Trp53 Haploinsufficient mice exposed by inhalation: Research report 3. Durham, NC: National Toxicology Program; 2017. http://www.ncbi.nlm.nih.gov/books/NBK513193.

    Book  Google Scholar 

  65. International Agency for Research on Cancer. The rubber industry. In: IARC monographs on the evaluation of carcinogenic risks of chemicals to humans, vol. 28. Lyon: IARC; 1982.

    Google Scholar 

  66. International Agency for Research on Cancer. Occupational exposures in the rubber-manufacturing industry. In: IARC monographs on the evaluation of carcinogenic risks to humans Vol. 100. A review of human carcinogens part F: chemical agents and related occupations. Lyon: IARC; 2012. p. 541–62.

    Google Scholar 

  67. Cogliano VJ, Baan R, Straif K, et al. Preventable exposures associated with human cancers. J Natl Cancer Inst. 2011;103:1827–39.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gilbert ES, Fry SA, Wiggs LD, Voelz GL, Cragle DL, Petersen GR. Analyses of combined mortality data on workers at the Hanford site, Oak Ridge National Laboratory, and rocky flats nuclear weapons plant. Radiat Res. 1989;120:19–35.

    Article  CAS  PubMed  Google Scholar 

  69. Douglas AJ, Omar RZ, Smith PG. Cancer mortality and morbidity among workers at the Sellafield plant of British nuclear fuels. Br J Cancer. 1994;70:1232–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Muirhead CR, Goodill AA, Haylock RG, et al. Occupational radiation exposure and mortality: second analysis of the National Registry for radiation workers. J Radiol Prot. 1999;19:3–26.

    Article  CAS  PubMed  Google Scholar 

  71. Cardis E, Gilbert ES, Carpenter L, et al. Effects of low doses and low dose rates of external ionizing radiation: cancer mortality among nuclear industry workers in three countries. Radiat Res. 1995;142:117–32.

    Article  CAS  PubMed  Google Scholar 

  72. Gilbert ES, Omohundro E, Buchanan JA, Holter NA. Mortality of workers at the Hanford site: 1945-1986. Health Phys. 1993;64:577–90.

    Article  CAS  PubMed  Google Scholar 

  73. Friesen MC, Bassig BA, Vermeulen R, et al. Evaluating exposure-response associations for non-Hodgkin lymphoma with varying methods of assigning cumulative benzene exposure in the Shanghai Women’s health study. Ann Work Exp Health. 2017;61:56–66.

    Article  Google Scholar 

  74. Teras LR, Diver WR, Deubler EL, et al. Residential ambient benzene exposure in the United States and subsequent risk of hematologic malignancies. Int J Cancer. 2019;145(10):2647–60.

    Article  CAS  PubMed  Google Scholar 

  75. Switchenko JM, Bulka C, Ward K, et al. Resolving uncertainty in the spatial relationships between passive benzene exposure and risk of non-Hodgkin lymphoma. Cancer Epidemiol. 2016;41:139–51.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sathiakumar N, Brill I, Leader M, Delzell E. 1,3-Butadiene, styrene and lymphohematopoietic cancer among male synthetic rubber industry workers—preliminary exposure-response analyses. Chem Biol Interact. 2015;241:40–9.

    Article  CAS  PubMed  Google Scholar 

  77. Checkoway H, Dell LD, Boffetta P, et al. Formaldehyde exposure and mortality risks from acute myeloid Leukemia and other lymphohematopoietic malignancies in the US National Cancer Institute cohort study of workers in formaldehyde industries. J Occup Environ Med. 2015;57:785–94.

    Article  CAS  PubMed  Google Scholar 

  78. International Agency for Research on Cancer. Lindane. In: IARC monographs on the evaluation of carcinogenic risks to humans. DDT lindane and 2,4D, vol. 113. Lyon: IARC; 2018. p. 267–372.

    Google Scholar 

  79. Alavanja MC, Hofmann JN, Lynch CF, et al. Non-Hodgkin lymphoma risk and insecticide, fungicide and fumigant use in the agricultural health study. PLoS One. 2014;9:e109332.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. International Agency for Research on Cancer. Pentachlorophenol. In: IARC monographs on the evaluation of carcinogenic risks to humans. Pentachlorophenol and some related compounds, vol. 117. Lyon: IARC; 2019. p. 33–140.

    Google Scholar 

  81. Demers PA, Davies HW, Friesen MC, et al. Cancer and occupational exposure to pentachlorophenol and tetrachlorophenol (Canada). Cancer Causes Control. 2006;17:749–58.

    Article  PubMed  Google Scholar 

  82. Boniol M, Koechlin A, Sorahan T, Jakobsson K, Boyle P. Cancer incidence in cohorts of workers in the rubber manufacturing industry first employed since 1975 in the UK and Sweden. Occup Environ Med. 2017;74:417–21.

    Article  CAS  PubMed  Google Scholar 

  83. Boniol M, Koechlin A, Świątkowska B, et al. Cancer mortality in cohorts of workers in the European rubber manufacturing industry first employed since 1975. Ann Oncol. 2016;27:933–41.

    Article  CAS  PubMed  Google Scholar 

  84. Hidajat M, McElvenny DM, Ritchie P, et al. Lifetime exposure to rubber dusts, fumes and N-nitrosamines and cancer mortality in a cohort of British rubber workers with 49 years follow-up. Occup Environ Med. 2019;76:250–8.

    Article  PubMed  Google Scholar 

  85. McElvenny DM, Mueller W, Ritchie P, et al. British rubber and cable industry cohort: 49-year mortality follow-up. Occup Environ Med. 2018;75:848–55.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Farioli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Violante, F.S., Farioli, A., Spatari, G., Broccoli, A., Zinzani, P.L. (2020). Lymphohematopoietic Malignancies. In: Anttila, S., Boffetta, P. (eds) Occupational Cancers. Springer, Cham. https://doi.org/10.1007/978-3-030-30766-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30766-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30765-3

  • Online ISBN: 978-3-030-30766-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics